期刊文献+

一类具有饱和传染率的时滞传染病模型的全局稳定性 被引量:2

Global stability of a delayed epidemic model with saturation infection
下载PDF
导出
摘要 研究了一类具有非线性饱和传染率和时滞效应的SEIR传染病模型,给出了用于判断疾病是否持续流行的基本再生数R_0.利用Lyapunov方法和LaSalle不变原理证明了当R_0≤1时,无病平衡点全局渐近稳定;当R_0>1时,疾病平衡点全局稳定. This paper was concerned with a mathematical model dealing with a delayed SEIR epidemic model with a saturation infection rate and a calculation method for the basic reproduction number R0 was given. Through constructing suitable Lyapunov functionals and using LaSalle invariant principle, we showed that the disease-free equilibrium was globally asymptotically stable if R0≤1 while the infected equilibrium was globally asymptotically stable if R01.
作者 李小玲 梁欣 刘亚东 李栋梁 胡广平 Li Xiao-ling Liang Xin Liu Ya-dong Li Dong-liang Hu Guang-ping(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China)
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期691-695,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家重点基础研究发展计划(973计划)项目(2013CB956004) 江苏省高校自然科学研究面上项目(15KJB110016) 江苏省高校大学生实践创新训练计划项目(201510300049 201610300040)
关键词 传染率 基本再生数 时滞 全局稳定性 incidence rate the basic reproduction number time delay global stability
  • 相关文献

参考文献2

二级参考文献20

  • 1庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 2SHULGIN B, STONE L, AGUR Z. Pulse vaccination strategy in the SIR epidemic model[J]. Bull Math Biol, 1998, 60(6): 1 123-1 148.
  • 3ZHAO Zhong, CHEN Lan-sun, SONG Xin-yu. Im- pulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate[J]. Math- ematics and Computers in Simulation, 2008, 79(3): 500-510.
  • 4DONOFRIO A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Appl Math Lett, 2005, 18(7): 729-732.
  • 5RAMSAY M, GAY N, MILLER E. The epidemiology of measles in England and Wales: rationale for the 1994 national vaccination campaignlJ]. Commun Dis Rep CDR Rev, 1994, 4(12): 141-146.
  • 6MENG Xin-zhu, CHEN Lan-sun, CHENG Hui-dong. Two profitless delays for the SEIRS epidemic dis- ease model with nonlinear incidence and pulse vac- cination[J]. Applied Mathematics and Compulation, 2007, 186(1): 516-529.
  • 7ZHANG Tai-lei, TENG Zhi-dong. Pulse vaccination delayed SEIRS epidemic model with saturation in- cidence[J]. Applied Mathematical Modelling, 2008, 32(7): 1 403-1416.
  • 8WEI Chun-jin, CnEN Lamsun. A delayed epidemic model with pulse vaccination[J]. Discrete Dynamics in Nature and Society, 2008, 2008: 1-12.
  • 9GAO Shu-jing, CHEN Lan-sun, NIETO J, et al. Anal- ysis of a delayed epidemic model with pulse vacci- nation and saturation incidence[J]. Vaccine, 2006, 24(35/36): 6 037-6 045.
  • 10GAO Shu-jing, CHEN Lan-sun, TENG Zhi-dong. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Analysis: Real World Ap- plication, 2008, 9(2): 599-607.

共引文献6

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部