摘要
研究了一类具有非线性饱和传染率和时滞效应的SEIR传染病模型,给出了用于判断疾病是否持续流行的基本再生数R_0.利用Lyapunov方法和LaSalle不变原理证明了当R_0≤1时,无病平衡点全局渐近稳定;当R_0>1时,疾病平衡点全局稳定.
This paper was concerned with a mathematical model dealing with a delayed SEIR epidemic model with a saturation infection rate and a calculation method for the basic reproduction number R0 was given. Through constructing suitable Lyapunov functionals and using LaSalle invariant principle, we showed that the disease-free equilibrium was globally asymptotically stable if R0≤1 while the infected equilibrium was globally asymptotically stable if R01.
作者
李小玲
梁欣
刘亚东
李栋梁
胡广平
Li Xiao-ling Liang Xin Liu Ya-dong Li Dong-liang Hu Guang-ping(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China)
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期691-695,共5页
Journal of Lanzhou University(Natural Sciences)
基金
国家重点基础研究发展计划(973计划)项目(2013CB956004)
江苏省高校自然科学研究面上项目(15KJB110016)
江苏省高校大学生实践创新训练计划项目(201510300049
201610300040)
关键词
传染率
基本再生数
时滞
全局稳定性
incidence rate
the basic reproduction number
time delay
global stability