期刊文献+

相依赔付带投资的延迟风险模型的极限性质 被引量:2

Limit property of the delayed risk model under dependent claims and investment
下载PDF
导出
摘要 研究了带投资的延迟索赔风险模型破产概率的极限性质.保险公司将其资产按常数比例投资于满足几何布朗运动的股票市场,其余部分投资于非负利率的债券市场.在主索赔额和延迟索赔额序列分别为负相依且属于重尾分布族的情形下,得到了有限时间破产概率的渐近等价表达式.该结论的有效性由相应的数值模拟进行了很好地验证,为保险公司的投资提供了一种思路. The limit property of ruin probability on the delayed risk model with investment was investigated. The case of an insurance company allowed to invest a constant fraction of its wealth in a stock market which was described by a geometric Brownian motion,while the remaining wealth in a bond with a nonnegative interest force. Under the assumptions that the sequences of the main and delayed claims were negatively dependent random variables and belonged to the heavy-tailed distribution class respectively, asymptotic formulas of finite-time ruin probability were obtained. The effectiveness of the results was remarkably verified by a numerical simulation. The conclusion of this paper can provide a kind of investment idea for insurance company.
作者 肖鸿民 刘爱玲 何艳 Xiao Hong-min Liu Ai-ling He Yan(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Chin)
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期696-700,705,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(71261023)
关键词 延迟风险模型 负相依 重尾分布族 几何布朗运动 有限时间破产概率 delayed risk model negatively dependent heavy-tailed distributions geometric Brownianmotion finite-time ruin probability
  • 相关文献

参考文献5

二级参考文献76

  • 1肖鸿民.多险种风险模型的破产概率[J].西北师范大学学报(自然科学版),2006,42(5):10-12. 被引量:5
  • 2袁海丽,胡亦钧.一类带扰动和附索赔风险模型的破产概率[J].数学杂志,2007,27(4):451-454. 被引量:1
  • 3EMBRECHTS P, KIUPPELBERG 12, MIKOSCH T. Modeling Extremal Events for Insurance and Finance[M]. Berlin: Springer, 1997.
  • 4ASMUSSEN S. Ruin Probabilities[M]. Singapore: World Scientific, 2000.
  • 5WATERS H R, PAPATRIANDAFYLOU A. Ruin probabilities allowing for delay in claims settlement [J]. Insurance.. Mathematics and Economics, 1985, 4: 113-122.
  • 6YUENKC, GUO J, NG K W . On ultimate ruin in a delayed-claims model[J]. Journal of Applied Probability, 2005, 42: 163-174.
  • 7MACCI C. Large deviations for risk model in which each main claim induces a delayed claim [J]. An International Journal of Probability and Stochastics Processes, 2006, 78: 79-89.
  • 8GAO Fu-qing, YAN Jun. Sample path large and moderate deviations for risk model with delayed claims[J]. Insurance: Mathematics and Economics, 2009. 45, 74-80.
  • 9CLINE D B H, SAMORODNITSKY G. Subexponentiality of the product of independent random variables [J]. Stochastic Processes Appl,1994, 49(1): 75-98.
  • 10CLINE D B H. Convolution product tails and domains of attraction[J]. Probability Theory and Related Fields, 1986, 72(4) : 529-557.

共引文献11

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部