期刊文献+

基于扩展卡尔曼滤波算法的电网动态状态估计 被引量:16

Dynamic State Estimation in Power System Based on the Extended Kalman Filter
下载PDF
导出
摘要 介绍了动态状态估计的卡尔曼滤波原理及扩展卡尔曼滤波(extended Kalman filter,EKF)算法,将其与估计精度和静态状态的加权最小二乘法进行比较,经过MATLAB编程对IEEE9-300节点和某215节点实际系统的测试,发现EKF算法具有明显的优势。为此,针对传统EKF算法存在的主要问题,提出基于时变噪声的改进EKF算法,使动态状态估计在系统正常情况和异常情况下的滤波精度均在理想范围内。电力系统动态状态估计对未来时刻的系统状态、运行轨迹的预测十分重要。 This paper introduces principle of Kalman filter and extended Kalman filter (EKF) algorithm for dynamic state es-timation, and makes a comparison between this dynamic state estimation algorithm with weighted leatt square method for es-timating precision and static state. According to tests on IEEE 9-300 node system and one 215 node system by MATLAB, it finds EKF algorithmhas significant advantages. Therefore, in view of existing problems in traditional EKF algorithm, it proposes an improved EKF algorithm based on time varying noise which can ensure filter tion within a reasonable range in normal state and under abnormal conditions.
出处 《广东电力》 2017年第10期86-92,共7页 Guangdong Electric Power
关键词 动态状态估计 非线性 扩展卡尔曼滤波 加权最小二乘 时变噪声 dynamic state estimation non-linear extended Kalman filter weighted least square time varying noise
  • 相关文献

参考文献7

二级参考文献92

共引文献122

同被引文献254

引证文献16

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部