期刊文献+

基于卷积神经网络的自动问答 被引量:12

The auto-question answering system based on convolution neural network
下载PDF
导出
摘要 自动问答是自然语言处理领域中的一个研究热点,自动问答系统能够用简短、精确的答案直接回答用户提出的问题,给用户提供更加精确的信息服务.自动问答系统中需解决两个关键问题:一是实现自然语言问句及答案的语义表示,另一个是实现问句及答案间的语义匹配.卷积神经网络是一种经典的深层网络结构,近年来卷积神经网络在自然语言处理领域表现出强大的语言表示能力,被广泛应用于自动问答领域中.本文对基于卷积神经网络的自动问答技术进行了梳理和总结,从语义表示和语义匹配两个主要角度分别对面向知识库和面向文本的问答技术进行了归纳,并指出了当前的研究难点. The question-answering is a hot research field in natural language processing,which can give users concise and precise answer to the question presented in natural language and provide the users with more accurate information service. There are two key questions to be solved in the question answering system: one is to realize the semantic representation of natural language question and answer, and the other is to realize the semantic matching learning between question and answer. Convolution neural network is a classic deep network structure which has a strong ability to express semantics in the field of natural language processing in recent years, and is widely used in the field of automatic question and answer. This paper reviews some techniques in the question answering system that is based on the convolution neural network, the paper focuses on the knowledge-based and the text-oriented QA techniques from the two main perspectives of semantic representation and semantic matching, and indicates the current research difficulties.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期66-79,共14页 Journal of East China Normal University(Natural Science)
基金 国家重点研发计划(2016YFB1000905) 国家自然科学基金广东省联合重点项目(U1401256) 国家自然科学基金(61672234 61402177) 华东师范大学信息化软课题
关键词 卷积神经网络 自动问答 语义表示 语义匹配 convolution neural network automatic question answering semanticrepresentation semantic matching
  • 相关文献

参考文献2

二级参考文献17

  • 1吴友政,赵军,段湘煜,徐波.问答式检索技术及评测研究综述[J].中文信息学报,2005,19(3):1-13. 被引量:48
  • 2[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 3[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 4[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 5[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 6[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 8[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 10[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)

共引文献225

同被引文献80

引证文献12

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部