期刊文献+

基于复杂属性商品的混合协同过滤推荐模型 被引量:2

A hybrid collaborative filtering recommendation model based on complex attribute of goods
下载PDF
导出
摘要 协同过滤作为应用最广、研究最多的推荐算法,但依旧面临数据稀疏性、冷启动、数据质量差等固有问题,同时也鲜有研究者从实用角度基于商品性价比方面提高预测精确度.为此,本文综合考虑用户主观评分和商品客观评分,并在此基础上结合情境预过滤、社会网络理论以及专家意见提出了一种混合协同过滤推荐模型,在一定程度上缓解了上述缺点.并通过真实网上汽车销售数据实验,表明该模型相对传统协同过滤具有更高的预测精度,更适用于具有复杂属性的商品. Collaborative filtering as the most widely used, the most recommendation algorithm,the shortcomings inherent in the data sparse,cold startpoor data quality and others, and few studies based on commodity price to improve the prediction accuracy. At the same time, facing the full e-commerce market network Navy, the ratings and reviews also indirectly led to the predict a decline in accuracy. Therefore, this paper comprehensive consideration of the user subjective ratings and objective product score, and on this basis, combined with situation pre filtering, social network theory and expert opinions put forward a hybrid collaborative filtering recommendation model, to some extent alleviate the above shortcomings. And through experiment with real online car sales data, the model has higher forecast accuracy than the traditional collaborative filtering, and is more suitable for the commodity with complex attributes.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期154-161,185,共9页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(41671402)
关键词 协同过滤 情境 复杂属性 个性化推荐 collaborative filtering context complex attribute personalized recommendation
  • 相关文献

参考文献8

二级参考文献155

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3陈冬林,聂规划,刘平峰.基于网页语义相似性的商品隐性评分算法[J].系统工程理论与实践,2006,26(11):98-102. 被引量:8
  • 4邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献735

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部