摘要
为降低城市出租车的空载率,缓解路网交通拥堵压力,亟需设计有效的出租车载客热门区域推荐方法.针对传统的出租车相关推荐方法忽略实际路况导致推荐精度较低的现状,提出了一个两阶段的载客热门区域实时推荐算法.首先,离线挖掘阶段,基于出租车历史轨迹数据集提取基于时段属性的载客热门区域;随后,在线推荐阶段,根据出租车请求位置及时间,结合实时路况设计潜在空载时间开销函数T_(cost)对载客热门区域进行评测排序,继而发现Top-κ载客热门区域.基于出租车轨迹数据集的实验结果表明,结合实时交通状况的Top-κ载客热门区域推荐方法以确保较小潜在空载时间开销,相较于传统的出租车推荐方法具有较好的有效性与鲁棒性.
To cut down the no-load rate of taxis and relieve the traffic pressure,an effective hotspot recommendation method of picking up passenger is necessitated. Aiming at the problem of lower recommendation precision of traditional recommendation technique due to ignoring the actual road situation, we propose a two-phase real-time hotspot recommendation approach for picking up passenger. In the phase of offline mining, timebased hotspots are extracted by mining the history taxi trajectory dataset. In the phase of online recommendation, according to the position and time of taxi requests, a potential no-passenger time cost evaluation function that based on real-time road situation is presented to evaluate and rank hotspots, and obtain top-κ hotspots of picking up passenger.Experimental results on taxi trajectory data show that, our proposal ensure smaller potential no-load time overhead due to considering real-time traffic conditions, and hence has good effectiveness and robustness as compared to the traditional recommendation approached.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期186-200,共15页
Journal of East China Normal University(Natural Science)
基金
四川省教育厅重点基金项目(17ZA0381
13ZA0015)
西华师范大学国家培育项目(16C005)
西华师范大学英才科研基金(17YC158)
关键词
潜在空载时间开销函数
实际路况
热门区域
推荐
potential no-passenger time cost function
real-time traffic
hotspot
recommendation