期刊文献+

基于厚尾分布模型在上证股指波动趋势上的应用

Application of Models Based on Fat-tail Distribution in Fluctuation Tendency of Shanghai Composite Index
下载PDF
导出
摘要 高风险高波动时期的股指收益率序列存在更为明显的厚尾现象,将残差设定为偏t分布的GARCH族模型要优于普通的正态分布以及学生t分布模型。以五种损失函数作为评价准则,在残差序列偏t分布前提下比较了GARCH模型、EGARCH模型和GJR-GARCH模型,最后得到在高风险时期结构更为简洁的GARCH(1,1)模型具有更好的预测效果。 During the high risk period,the yield rate series of stock of index has more obvious fat-tail phenomenon,Setting the residuals for fattail distribution of these GARCH models is superior to the models with normal distribution and t distribution.According to the five kinds of loss functions,GARCH model、EGARCH model and GJR-GARCH model are compared based on fat-tail distribution,the conclusion is that GARCH(1,1)model with briefer structure has a better prediction ability in the high risk period.
作者 邓亚东 王波
出处 《科技和产业》 2017年第7期157-161,共5页 Science Technology and Industry
关键词 厚尾分布 GARCH模型 波动率预测 fat-tail distribution GARCH model fluctuation prediction
  • 相关文献

参考文献2

二级参考文献16

  • 1彭作祥,庞皓.具有GARCH-skew-t误差项的时序的单位根检验[J].数理统计与管理,2005,24(6):49-54. 被引量:4
  • 2CoroneloBrizio H F, Hernandez-Montoya A R. On fitting the Pareto-Levy distribution to stock market index data -- Selecting a suitable cutoff value[J]. Physica A, 2005, 354: 437-449.
  • 3Yan C, Zhang J W, Zhang Y, et al. Power-law properties of Chinese stock market[J]. Physica A, 2005, 353: 425-432.
  • 4Cassidy D T, Hamp M J, Ouyed R. Pricing European options with a log student's t-distribution: A gosset formula[Z], arXiv:0906.4092vl. 2009, June 22.
  • 5Gu G F, Chen W, Zhou W X. Empirical distributions of Chinese stock returns at different microscopic timescales[J] Physica A, 2008, 387: 495-502.
  • 6Black F, Scholes M. The pricing of options and corporate liabilities[J]. The Journal of Political Economy, 1973, 81(3): 637-654.
  • 7Blattberg R C, Gonedes N. A comparison of the stable and student distributions as statistical models for stock prices[J]. Journal of Business, 1974, 47(2): 244-280.
  • 8Gopikrishnan P, Plerou V, Amaral L A N, et al. Scaling of the distributions of fluctuations of financial market indices[J]. Phys Rev E, 1999, 60: 5305-5316.
  • 9Qiu T, Zheng B, Ren F, et al. Statistical properties of German Dax and Chinese indices[J]. Physica A, 2007,378: 387-398.
  • 10Platen E, Sidorowicz R. Empirical evidence on student-t log-returns of diversified world stock indices[R]. Quan- titative Finance Research Centre, University of Technology, 2007.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部