期刊文献+

弹性地基一般支承输流管道的随机动力学行为

The Stochastic Dynamic Behavior of Commonly Supported Fluid-conveying Pipes on Elastic Foundation
下载PDF
导出
摘要 通过建立弹性地基一般支承输流管道的随机非线性动力学模型,得到Ito随机微分方程,并求解该系统响应扩散过程的转移概率密度函数相应的FPK方程.然后用拟不可积Hamilton理论对系统进行Hopf分岔分析,利用Lyapunov指数和奇异边界理论对该系统的稳定性进行讨论.最后通过模拟平稳概率密度函数和联合概率密度函数的图像对得到的数值结果进行验证. Firstly,the stochastic nonlinear dynamic model of the system is established and the Ito differentiation equation is obtained.Then,the corresponding FPK equation of the response-transition probability density function with the diffusing process can be got.Secondly,the Hopf bifurcation behavior of the system is studied by using the quasi-nonintegrable Hamilton system theory.Besides,the conditions of local and global stability of the system are discussed by largest Lyapunov exponent and boundary category.Finally,the functional image of stationary probability density and jointly stationary probability density are simulated,and the numerical results are verified.
作者 白宝丽 展之婵 白媛 贾彬霞 BAI Bao-li ZHAN Zhi-chan BAI Yuan JIA Bin-xia(School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Chin)
出处 《兰州文理学院学报(自然科学版)》 2017年第5期23-27,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 国家自然科学基金项目(61364001)
关键词 弹性地基 输流管道 随机稳定性 随机Hopf分岔 elastic foundation flow conveying pipe stochastic stability stochastic Hopf bifurcation
  • 相关文献

参考文献4

二级参考文献33

  • 1张紫龙,唐敏,倪樵.非线性弹性地基上悬臂输流管的受迫振动[J].振动与冲击,2013,32(10):17-21. 被引量:8
  • 2王忠民,张战午,李会侠.粘弹性地基上粘弹性输流管道的稳定性分析[J].计算力学学报,2005,22(5):613-617. 被引量:6
  • 3包日东,闻邦椿.分析弹性支承输流管道的失稳临界流速[J].力学与实践,2007,29(4):24-28. 被引量:18
  • 4朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99. 被引量:47
  • 5Agrawal A K, Yang J N Y. Effect of fixed time delay on stability and performance of actively controlled civil engineering structures [ J ]. Earthquake Engineering and Structural Dynamics, 1997,26 : 1169--1185.
  • 6Soliman M R, Ray W H. Optimal feedback control for linear quadratic systems having time delays[J]. Inter- national Journal of Control, 1972,15 : 609--615.
  • 7Lin C C, Shen J F, Chu S Y. Time-delay effect and its solution for optimal output feedback control of struc- tures[J]. Earthquake Engineering and Structural Dy- namics, 1996,25 . 547--559.
  • 8Grigoriu M. Control of time delay linear systems with Gaussian white noise[J]. Probabilistic Engineering Me- chanics, 1997,12 : 89--96.
  • 9Klosek M M, Kuske R. Multi-scale analysis of sto- chastic delay differential equations [J]. Multi-scale Modeling and Simulation, 2005,3 : 706--729.
  • 10Fofana M S. Asymptotic stability of a stochastic delay equation VJ ]. Probabilistic Engineering Mechanics, 2002,17:385--392.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部