摘要
根据微分方程dy/dx=a1x+b1y+c1/a2x+b2y+c2的求解方法,对4类具有特定形式的高次微分方程进行了研究,通过变量代换,将其转化为dy/dx=+1x+b1y+c1/a2x+b2y+c2的形式,从而求出其通解.通过实例说明方法的有效性.
Based on the solving method of differential equation dy/dx=a1x+b1y+c1/a2x+b2y+c2,four classes of high degree differential equations with a specific form are studied.Through variable substitution,they are converted into dy/dx=a1x+b1y+c1/a2x+b2y+c2,so as to find out the general solution.An example is given to illustrate the effectiveness of the method.
作者
陈翠玲
仇东雪
韦莹
何子群
黄秀文
CHEN Cui-ling QIU Dong-xue WEI Ying HE Zi-qun HUANG Xiu-wen(School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China)
出处
《高师理科学刊》
2017年第10期4-7,共4页
Journal of Science of Teachers'College and University
基金
2017年自治区级大学生创新创业训练计划项目(201710602210)
2017年度广西高等教育本科教学改革工程项目(2017JGB147)
2017年度广西高校中青年教师基础能力提升项目(2017KY0068)
关键词
微分方程
通解
变量代换
differential equation
general solution
variable substitution