期刊文献+

高速道路交通视频中车辆目标提取研究 被引量:2

Research on video vehicle object extraction based on high-speed road traffic
下载PDF
导出
摘要 为了能够从监控视频中快速、准确地分析车辆目标,提出了基于感兴趣区域(ROI)的车辆目标提取方法。针对高速公路监控视频,利用混合高斯背景建模,在视频中划定ROI,以排除逆向车道车辆目标的影响,应用图像形态学进行干扰点排除与前景图像轮廓空洞填充,对运动车辆目标进行检测后,用最小矩形方框法自动截取目标,最终,通过图像尺度归一化建立车辆样本数据库,为车型分类和识别提供目标图像。实验结果表明:该方法对车辆目标提取准确率高,且图像数据库样本丰富。 In order to analyze on vehicle target from the surveillance video quickly and accurately,vehicle target extraction method based on region of interest (ROI)area is proposed. Aiming at highway surveillance video,use Gaussian mixture background for modeling,draw ROI area invideo,to eliminate the influence of the reverse drive vehicle target,by method of image morphology for eliminating interference points and image contour cavity filling, after detecting vehicle moving target automatically intercept target with minimum rectangular box method,and finally build vehicles sample database by normalized image scale,provide target image for vehicle classification and recognition. The experimental results show that extraction accuracy of vehicle target by the method is high,and be able to rich the image database sample.
作者 刘凯雄 李玉惠 李勃 刘加运 LIU Kai-xiong LI Yu-hui LI Bo LIU Jia-yun(School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China Intelligent Image Processing Research Center of Intelligent Transportation System Engineering Technology Research Center of Yunnan Province,Kunming 650500, China)
出处 《传感器与微系统》 CSCD 2017年第10期35-37,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61363043)
关键词 混合高斯背景建模 感兴趣的区域 背景差分法 最小矩形 车辆目标提取 Gaussian mixture background modeling region of interest (ROI ) area background difference method the smallest rectangle vehicle target extraction
  • 相关文献

参考文献5

二级参考文献80

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2张婵,高新波,姬红兵.视频关键帧提取的可能性C-模式聚类算法[J].计算机辅助设计与图形学学报,2005,17(9):2040-2045. 被引量:21
  • 3魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 4左军毅,潘泉,梁彦,张洪才,程咏梅.基于模型切换的自适应背景建模方法[J].自动化学报,2007,33(5):467-473. 被引量:15
  • 5Bishop R. A survey of intelligent vehicle applications world wide[ C ]// IEEE Intelligent Vehicles. Michigan ,2002:25 -29.
  • 6Sun Z, Miller R, Bebis G, et al. A real-time precrash vehicle detection system[ C ]//IEEE International Workshop on Application of Computer Vision, Washington DC, 2002 : 1 -6.
  • 7Mori H, Charkai N. Shadow and rhythm as sign patterns of obstacle detection[ C ]// IEEE Industrial Electronics, Budapest, 1993 : 271 -277.
  • 8Tzomakas C, Seelen W. Vehicle detection in traffic scenes using shadows[ R]. Bochum Ruht Universidad: Internal Report IRINI, 1998 : 79 -85.
  • 9Matthews N, Charnley D. Vehicle detection and recognition in grayscale imagery[ J ]. Control Engineering Practice, 1996,4 (4) : 473 -479.
  • 10Ninomiya Y, Matsuda S, Ohta M. A real-time vision for intelligent vehicles[ C]//IEEE Intelligent Vehicles, Michigan, 1995:315 - 320.

共引文献170

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部