期刊文献+

基于QPSO的模糊分类系统优化设计 被引量:1

Optimization design of fuzzy classifcation system based on QPSO
下载PDF
导出
摘要 提出了构建模糊分类系统的有效方法。通过量子位选择的方法对初始的模糊规则进行优化,减少种群规模、提高全局搜索能力,且可以大幅缩短训练时间,达到快速收敛、有效分类的目的。为了优化模糊分类空间和减少模糊规则数目,提出了量子行为粒子群优化(QPSO)算法,提高初始模糊分类系统的性能。实验结果证明:优化方法较之其他方法更有效率,准确率更高。 An effective method for construction of fuzzy classification system(FCS) is proposed. In FCS,the initial fuzzy rules are optimized with a quantum bit which has many unique advantages such as small population size,fast convergence,short training time and strong global search ability. After then,in order to accomplish the optimization for the fuzzy classification space and reduce number of fuzzy rules,quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to improve characteristics of initial FCS. The experimental result demonstrates that this method is more efficient and accurate than other methods without QPSO.
作者 诸云晖 孙俊 ZHU Yun-hui SUN Jun(School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
出处 《传感器与微系统》 CSCD 2017年第10期89-91,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61672263)
关键词 模糊分类系统 模糊规则 量子进化 量子行为粒子群优化 fuzzy classification system fuzzy rules quantum evolution
  • 相关文献

参考文献3

二级参考文献28

  • 1李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社,1996.
  • 2汤兵勇.模糊控制理论和应用技术.清华大学出版社,1998年.
  • 3诸静.模糊控制理论和应用.机械电子工业出版社,1996年.
  • 4Ramaswamy S.Portfolio selection using fuzzy decision theory[R].Working Paper of Bank for International Settlements,No.59,1998.
  • 5Watada J.Fuzzy portfolio model for decision making in investment[A].Yoshida Y.Dynamical aspects in fuzzy decision making[C].Heidelberg:Physica-Verlag,2001:141-162.
  • 6Abdel-Kader M G,Dugdale D.Evaluating investments in advanced manufacturing technology:a fuzzy set theory approach[J].British Accounting Review,2001,33(4):455-489.
  • 7Liu B.Theory and practice of uncertain programming[M].Heidelberg:Physica-Verlag,2002.
  • 8Nahmias S.Fuzzy variables[J].Fuzzy Sets and Systems,1978,1(2):97-110.
  • 9Liu B.Uncertain programming[M].New York:Wiley,1999.
  • 10Liu B,Liu Y K.Expected value of fuzzy variable and fuzzy expected value models[J].IEEE Transactions on Fuzzy Systems,2002,10(4):445-450.

共引文献8

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部