期刊文献+

区间值合作对策的广义区间Shapley值 被引量:2

Generalized Interval Shapley Value for Interval-valued Cooperative Games
下载PDF
导出
摘要 研究区间Shapley值通常对区间值合作对策的特征函数有较多约束,本文研究没有这些约束条件的区间值合作对策,以拓展区间Shapley值的适用范围。首先,本文指出广义H-差在减法与加法运算中存在的问题,进而提出了一种改进的广义H-差,称为扩展的广义H-差。然后,基于扩展的广义H-差,定义了区间值合作对策的广义区间Shapley值,并用区间有效性、区间对称性、区间哑元性和区间可加性等四条公理刻画了该广义区间Shapley值。同时,证明了该值的存在性与唯一性,而且得到了该值的一些性质。研究表明,任意的区间值合作对策的广义区间Shapley值都存在。最后,以算例说明该广义区间Shapley值的可行性与实用性。 The research of interval Shapley value for interval-valued cooperative games often assumes that there are some restrictions on characteristic function of this class of games, such as superadditive, convex and size monotonic. To expand the scope of the research, this paper investigates the interval-valued cooperative games without these restrictions. Firstly, we point out several shortcomings of the generalized Hukuhara difference and propose the so-called extended generalized Hukuhara difference. Then, based on extended generalized Hukuhara difference, the generalized interval Shapley value for interval-valued cooperative games is introduced. We char- acterize the generalized interval Shapley value using the axioms of interval efficiency, interval symmetry, interval dummy player and interval additivity. Meanwhile, we prove the existence and uniqueness of the generalized interval Shapley value and discuss some properties of this value. The study shows that an arbitrary interval-valued cooperative game has a unique generalized interval Shapley value. Finally, a numerical example is given to illus- trate the feasibility and practicability of the generalized, interval Shapley value.
作者 邹正兴 张强 ZOU Zheng-xing;ZHANG Qiang(School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2017年第10期1-9,共9页 Operations Research and Management Science
基金 国家自然科学基金资助项目(71771025 71371030 71401003 71561022) 内蒙古自然科学基金(2017MS0715)
关键词 合作对策 区间数 区间Shapley值 广义H-差 cooperative games interval number interval Shapley value generalized Hukuhara difference
  • 相关文献

参考文献2

二级参考文献16

  • 1于晓辉,张强.模糊合作对策的区间Shapley值[J].中国管理科学,2007,15(z1):76-80. 被引量:4
  • 2Li Dengfeng. Lexicographic method for matrix games with payoffs of triangular fuzzy numbers [J]. International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, 2008, 16(3):371-389.
  • 3Branzei R, Branzei O, Alparslan G6k S Z, et al. Cooperative interval games: A survey[J]. Central European Journal of Operations Research, 2010, 18(3):397- 411.
  • 4Han Weibin, Sun Hao, Xu Genjiu. A new approach of cooperative interval games: The interval core and Shapley value revisited[J]. Operations Research Letters, 2012, 40(6): 462-468.
  • 5Branzei R, Dimitrov D, Tijs S. Shapley- like values for interval bankruptcy games [J]. Economics Bulletin, 2003, 3(8): 1-8.
  • 6Alparslan GOk S pley value: An Z, Branzei R, Tijs S. The interval Shaaxiomatiezation [J]. Central European Research, 2010, 18(2): 131.
  • 7Mallozzi L, Scalzo V, Tijs S. Fuzzy interval cooperative games[J]. Fuzzy Sets and Systems, 2011, 165(1): 98 -105.
  • 8Alparslan Gok S Z, Miquel S, Tijs S. Cooperation under interval uncertainty [J]. Mathematical Methods of Operational Research, 2009, 69(1): 99-109.
  • 9Branzei R, Alparslan Gok S Z, Branzei O. Cooperation games under interval uncertainty: On the convexity of the interval undominated cores[J]. Central European Journal of Operations Research, 2011, 19 (4) : 523- 532.
  • 10Yu Xiaohui, Zhang Qiang. An extension of cooperative fuzzy games[J]. Fuzzy Sets and Systems, 2010, 161 (11) : 1614-1634.

共引文献23

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部