期刊文献+

矩阵方程组的双对称最小二乘解 被引量:1

Least-Square Bisymmetric Solutions of Matrix Equations
下载PDF
导出
摘要 矩阵方程组∑_(j=1)~lA_(ij)X_jB_(ij)=C_i(i=1,2,…,t)在控制与系统领域中具有广泛应用.构造了一种算法求这个矩阵方程组的最小二乘双对称解.在没有舍入误差的情况下,该算法在有限步内能求得双对称矩阵组[X_1,X_2,…,X_l],使得∑_(i=1)~t‖∑_(j=1)~lA_(ij)X_jB_(ij)-C_i‖2达到最小.数值实验表明,这种算法是有效的. The matrix equations ∑_(j=1)~lA_(ij)X_jB_(ij)=C_i( i = 1,2,…,t) have numerous applications in control and system theory. An algorithm is constructed to find the least-square bisymmetric solutions of the matrix equations in this paper. The algorithm produces suitable[X1,X2,…,Xl]such that ∑_(i=1)~t‖∑_(j=1)~lA_(ij)X_jB_(ij)-C_i‖2 is minimized within a finite iteration steps in the absence of round off errors.Numerical examples are given to show that the algorithm is efficient.
作者 彭卓华
出处 《长沙大学学报》 2017年第5期1-7,共7页 Journal of Changsha University
基金 湖南省教育厅重点项目(批准号:15A062)
关键词 算法 矩阵方程组 双对称解 最小二乘解 algorithm matrix equations bisymmetric solution least squares solution
  • 相关文献

参考文献1

  • 1Ph.D.Candidate:Wang Gang Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics, Beijing 100083, China,Supervisor: Deng Xue ying (Beijing University of Aeronautics and Astronautics) Members of Dissertation Defense Committee: Tong Bing gang (Graduate School of the Chinese Academy of Sciences),Chairman Gu Zhi fu (Peking University) Yang Qi de (China Aerodynamics Research and Development Center) Lv Zhi yong (Beijing University of Aeronautics and Astronautics) Liu Pei qing (Beijing University of Aeronautics and Astronautics).EXPERIMENTAL STUDY OF FLOWFIELD STRUCTURE AROUND AN OGIVE-CYLINDER[J].Journal of Hydrodynamics,2003,15(5):109-109. 被引量:18

共引文献17

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部