期刊文献+

基于局部结构张量-互信息的多模态图像配准 被引量:4

Multi-Modal Image Registration on the Basis of Local Structure Tensor-Mutual Information
下载PDF
导出
摘要 互信息测度仅考虑了图像全局一致的灰度统计特性而忽略了空间结构信息和图像灰度统计的局部性特点.为克服以上缺点,提出了一种基于局部结构张量-互信息新测度的配准方法.所提出的新测度充分考虑了图像邻域的结构信息,将结构越强的位置赋予较大的度量值,使得全局极值的区别性加强,减少了配准过程中陷入局部极值的风险,提高了配准成功率,增强了配准的鲁棒性.采用模拟脑图像和临床图像进行了配准试验,结果表明,与基于互信息和局部互信息的配准方法相比,该方法配准成功率平均提高了50%以上,配准鲁棒性显著增强. Mutual information ( MI) measure considers the global characteristics of image gray statistics only, and ignores spatial structure information and local characteristics of image gray statistics. In order to overcome these drawbacks, a registration method on the basis of the new measure of local structure tensor-mutual information ( LST- MI) is proposed. The proposed LST-MI measure considers the structure information of image neighborhood fully, gives the pixel position with greater importance larger weighting factor. Thu s , the distinguishing of global extremum strengthens,the risk of trapping at local extremum red u ces , the success rate improves, and the robustness of regis-tration enhances. Moreover, some registration experiments are conducted on simulated brain images and clinical im-ages. The results show that , in comparison with the registration method on the basis of mutual information and localmutual information, the proposed method improves the success rate of registration by more than 50% , and enhancesthe registration robustness significantly.
作者 张莉 李彬 田联房 李祥霞 ZHANG Li LI Bin TIAN Lian-fang LI Xiang-Xia(School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第7期98-106,共9页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61305038,61273249) 海洋公益性行业科研专项经费资助项目(201505002) 华南理工大学中央高校基本科研业务费专项资金重点资助项目(2015ZZ028)~~
关键词 图像配准 相似性测度 局部结构张量 互信息 image registration similarity measure local structure tensor mutual information
  • 相关文献

参考文献1

二级参考文献20

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2苏志勋,刘艳艳,刘秀平,周晓杰.基于模糊CCA的图像特征提取和识别[J].计算机工程,2007,33(16):144-146. 被引量:3
  • 3Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Maul, USA: IEEE, 1991. 586-591.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. Fisher-faces: recognition using class specific linear projec- tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 71]-720.
  • 5He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition us- ing Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 6Li H, Jiang T, Zhang K. Efficient and robust feature extrac- tion by maximum margin criterion. IEEE Transactions on Neural Networks, 2003, 17(1): 157-165.
  • 7Zhang W, Lin Z, Tang X. Learning semi-riemannian met- rics for semisupervised feature extraction. IEEE Transac- tions on Knowledge Discovery and Engineering, 2011, 23(4): 600-611.
  • 8Cai D, He X, Han J. Subspace Learning Based on Ten- sor Analysis, Technical Report No. UIUCDCS-R-2005-2572, Department of Computer Science, University of Illinois at Urbana-Champaign, USA, 2005.
  • 9He X, Cai D, Niyogi P. Tensor subspace analysis. Advances in Neural Information Processing Systems. Massachusetts: The MIT Press, 2005.
  • 10Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang H. Discrim- inant analysis with tensor representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2005. 526-532.

共引文献4

同被引文献27

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部