期刊文献+

密度聚类划分时间段的动态热度路网构建 被引量:2

Constructing dynamic hot road networks using time points density clustering
下载PDF
导出
摘要 为减少构建路网计算量,快速获取交汇口,提出停留点扩展法。分析停留点空间分布特性,仅根据停留点的相关性进行扩展,减少轨迹点遍历,实现交汇口的快速获取。为准确将静态热度路网转化为动态热度路网,提出密度聚类划分时间段法。对轨迹点使用密度聚类,计算聚类结果中各个时间段的热度,作为边的动态热度,实现动态热度路网构建。实验结果表明,停留点扩展法能够减少计算量,快速获取交汇口;密度聚类划分时间段法可以根据不同时段轨迹点密度变化合理划分时间段,实现动态热度路网构建。 To reduce the computation costs in road networks construction,an enhanced stop points expansion approach was proposed to efficiently acquire intersections.Features of the distribution of stop points were analyzed,the expansion was judged according to the relevance of stop points,which reduced the points traversal and acquired intersections effectively.To transform a static hot road network into a dynamic hot road network,the time points density clustering was proposed.The points were clustered by density clustering,the hot value in each cluster was calculated as the dynamic hot value of edge,which completed the construction of dynamic hot road networks.Experimental results show that the proposed stop points expansion approach reduces the computation costs to enhance the efficiency of acquiring intersections.The time points density clustering partitions time properly according to the points density variation trend which can construct a dynamic hot road network.
作者 周宇鹏 牛保宁 ZHOU Yu-peng NIU Bao-ning(College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024,Chin)
出处 《计算机工程与设计》 北大核心 2017年第11期3023-3028,3130,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61572345) 国家科技支撑计划基金项目(2015BAH37F00)
关键词 交汇口 停留点 扩展 密度聚类划分时间段 动态热度路网 intersections stop points expansion time points density clustering dynamic hot road networks
  • 相关文献

参考文献1

二级参考文献13

  • 1Chen Z,Shen H T,Zhou X.Discovering popular routes from Trajectories[C]//Data Engineering(ICDE),2011 IEEE 27th International Conference on.IEEE,2011:900-911.
  • 2Wei L Y,Zheng Y,Peng W C.Constructing popular routes from uncertain trajectories[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2012:195-203.
  • 3Chen Y J,Yang KX,Hu H,et at.Finding Time-Dependent Hot Path from GPS Trajectories[C]//WAIM,2014,accepted paper.
  • 4Li X,Han J,Lee J G,et at.Traffic density-based discovery of hot routes in road networks[M]//Advances in Spatial and Temporal Databases.Springer Berlin Heidelberg,2007:441-459.
  • 5Sacharidis D,Patroumpas K,Terrovitis M,et al.On-line discovery of hot motion paths[C]//Proceedings of the 11 th international conference on Extending database technology:Advances in database technology.ACM,2008:392-403.
  • 6Guo D,Liu S,Jin H.A graph-based approach to vehicle trajectory analysis[J].Journal of Location Based Services,2010,4(3-4):183-199.
  • 7Li Q,Zeng Z,Zhang T,et at.Path-finding through flexible hierarchical road networks:An experiential approach using taxi trajectory data[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(1):110-119.
  • 8Li Z,Ding B,Han J,et at.Mining periodic behaviors for moving objects[C]//Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2010:1099-1108.
  • 9Kalnis P,Mamoulis N,Bakiras S.On discovering moving clusters in spatio-temporal data[M]//Advances in spatial and temporal databases.Springer Berlin Heidelberg,2005:364-381.
  • 10Fosca Giannotti,Mirco Nanni,Fabio Pinelli,Dino Pedreschi.[C]Trajectory pattern mining.In KDD,pages 330-339,2007.

同被引文献22

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部