期刊文献+

基于增量反馈RBM的电能替代终端能源评价模型 被引量:2

Electric power substitute end-use energy evaluation model based on incremental feedback RBM
下载PDF
导出
摘要 针对电能替代终端能源评价方法中存在的效率低、精确度不高等问题,提出一种基于深度学习思想的电能替代终端能源的评价模型。重新设计最优RBM训练算法,提出增量反馈的模型优化迭代策略,优化模型训练参数的初始化赋值,提升电能替代终端能源评价效率和精确度。实验结果表明,对比其它优化算法模型,增量反馈的RBM在抽取和表现特征方面,能够很好将样本的本质特征体现出来,取得了更加高效和准确的评价结果。 Aiming at the situation of poor efficiency and low accuracy in the domain of the electric power substitution of end-use energy,an evaluation model based on the thought of deep learning was proposed.An optimal RBM training algorithm was redesigned and the incremental feedback iteration strategy was put forward,and the assignment of the value initialization was optimized and the efficiency and accuracy of evaluation was improved in electric power substitute end-use energy.The simulation results show that using the method has good capacity of extracting and expressing features.It can also reflect the essential features and achieve more effective and accurate evaluation comparing with other different modern optimization algorithms.
作者 高鑫 胡彩娥 王健 丁屹峰 马龙飞 GAOXin HUCai-e WANG Jian DING Yi-feng MA Long-fei(State Grid Beijing Electric Power Company, Beijing 100075,China Electric Power Research Institute, State Grid Beijing Electric Power Company, Beijing 100075, China)
出处 《计算机工程与设计》 北大核心 2017年第11期3066-3071,共6页 Computer Engineering and Design
关键词 电能替代 增量反馈 受限玻尔兹曼机 评价模型 终端能源 electric power substitute incremental feedback RBM evaluation model end-use energy
  • 相关文献

参考文献8

二级参考文献79

  • 1蔡国军,王建春.热泵替代燃油锅炉的技术经济分析——以浙江工业大学游泳馆为例[J].消费导刊,2010(2):49-50. 被引量:2
  • 2黄蕙.中国能源战略四大全新命题[J].瞭望,2005(45):18-20. 被引量:6
  • 3陈保华,刘殿海,杨勇平,杨志平.关于火电厂煤耗管理的研究[J].现代电力,2006,23(2):72-75. 被引量:6
  • 4CHAN C C. Energy Development Strategy, Industrial Ecology and Challenges to Electric Machines Systems [C]// Proceedings of ICEMS 2005 Cconference, 2005 : 12-17.
  • 5HADJSAID N,CANARD J F,DUMAS F.Dispersed Generation Impact on Distribution Networks [J].IEEE Computer Application in Power, 1999,27(12)- 22-28.
  • 6JOOS G,OOI B T,MCGILLIS D,et al.The Potential of Distributed Generation to Provide Ancillary Services [C]// Proceeding of 2000 IEEE PES Summer Meeting,2000: 1762-1767.
  • 7WAHSH S.Past Present Future of Electrical Vehicle [C]// Proceeding of MEPCON 2008 Cconference, 2008 : 119- 123.
  • 8BP Group. BP Statistical Review of World Energy June2011 [R/OL]. http://www.bp.com/liveassets/bp_internet/china/ bpchina_chinese/STAGING/local_assets/downloads_pdfs/ BPenergy2011.pdf.
  • 9董长虹.Matlab神经网络与应用[M]北京:国防工业出版社,200768-71.
  • 10Zeng B,Zhang J H,Yang X,et al.Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response[J].IEEE Transactions on Power Systems,29(3):1153-1165,2014.

共引文献97

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部