期刊文献+

动背景下基于低秩傅里叶模式重构物体目标检测

Motion detection method based on reconstruction of low-rank Fourier modes in moving background
下载PDF
导出
摘要 依据矩阵的低秩表示可以恢复矩阵主要信息并抑制噪声干扰的原理,提出一种适用于动背景条件下的运动检测方法。在背景建模阶段,采用傅里叶模式将实际场景的视频序列矩阵近似分解成一个背景部分的低秩分量和前景部分的稀疏分量,依据低幅值的傅里叶模式重建背景模型,有效克服动背景引入的背景模型噪声;在前景检测阶段,依据两幅低幅值傅里叶模式的重建图像自适应计算前景分割阈值,有效分离前景和背景。在Changedetection.net的7个数据子集上进行仿真实验,其结果表明,采用所提方法进行运动检测的正确分类百分比指标和处理帧率指标高于常用的VIBE和GSOM方法。 According to the principle that low-rank representation of a matrix can recover the main information of the matrix and suppress noise interference,a motion detection method for dynamic background was proposed.In the phase of background modeling,the video sequence from actual scene was approximately divided into two parts using Fourier modes.One was the background with low-rank component,and the other was the foreground with sparse component,and background model according to the low amplitude of the Fourier modes was reconstructed,to effectively overcome the noise of background model from dynamic background.In the phase of foreground detection,the segmentation threshold was adaptively computed according to two images reconstructed using two Fourier modes with low amplitude,to separate the foreground and background effectively.Results of simulation experiments on seven sub-datasets of Changedetection.net show that two measures including percentage of correct classification and frames per second for motion detection of the proposed method are higher than commonly used methods such as VIBE and GSOM.
作者 王小芬 高丽 周頔 WANG Xiao-fen GAO Li ZHOU Di(School of Information and Electronic Engineering, Shangqiu Institute of Technology, Shangqiu 476000,China College of Information and Business, Zhongyuan University of Technology, Zhengzhou 450007,China Department of Computer Science, Sichuan University of Arts and Science, Dazhou 635000,China)
出处 《计算机工程与设计》 北大核心 2017年第11期3168-3172,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61063028)
关键词 低秩表示 运动检测 傅里叶模式 背景模型 动背景 low-rank representation motion detection Fourier mode background model dynamic background
  • 相关文献

参考文献4

二级参考文献53

  • 1Heisele B, Kressel U, Ritter W. Tracking non-rigid, moving objects based on color cluster flow [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Puerto Rico, June 17-19, 1997. IEEE Computer Society, 1997: 257-260.
  • 2MIKOLAJCZYK K, SCHMID C. Scale and Affine Invariant Interest Point Detectors [J]. International Journal of Computer Vision(SO920-5691), 2004, 60(1): 63-86.
  • 3Lowe D G Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 91-110.
  • 4SUN D, ROTH S, BLACK M J. Secrets of optical flow estimation and their principles [C]// IEEE Computer Society Conference on Computer Vision and Pattern Reeognition, San Francisco, California, USA, June 13-18, 2010. IEEE Computer Society, 2010, 6: 2432-2439.
  • 5PENG X, BENNAMOUN M, MA Q, et al. Drift-correcting template update strategy for precision feature point tracking [J].Image andVision Computing(S0262-8856), 2010, 28(8): 1280-1292.
  • 6SHOICHI A, TAKASHI M, NAOKAZU Y, et al. Real-time tracking of multiple moving object contours in a moving camera image sequence [J]. IEICE Transaetions on Information and Systems (S0916-8532), 2000, 83(7): 1583-1591.
  • 7THOMPSON W B, MUTCH K M, BERZINS V A. Dynamic occlusion analysis in optical flow fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2009, PAMI-7(4): 374-383.
  • 8ADIV Ct Determining three-dimensional motion and structure from optical flow generated by several moving objects [J]. IEEE Transactions on Pattern Analysis and Maehine Intelligence(S0162-8828), 2009, PAMI-7(4): 384-401.
  • 9余涛.Kinect应用开发实战:用最自然的方式与机器对话[M].北京:机械工业出版社,2012.
  • 10TOYAMA K,KRUMM J,BRUMITT B. Wallflower:principles and practice of background maintenance[A].[S.l.]:IEEE Press,1999.255-261.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部