期刊文献+

基于比赛环境特征的多目标运动员跟踪方法 被引量:4

Multi-object player tracking method based on game environment feature
下载PDF
导出
摘要 鉴于运动员跟踪与移动的复杂程度和环境等因素高度相关,提出一种基于当前运动轨迹和赛场环境特征的跟踪检测方法。从噪声检测中提取赛场环境特征集,对选手空间分布情况等当前赛场环境特征进行描述;基于当前轨迹和比赛环境特征训练随机决策森林,建立运动员各时间点的亲密度模型,该环境条件性运动模型包含目标关联性,可保持可跟踪性。对分别包括10名和22名选手的篮球和足球比赛进行实验,各选取持续几分钟的序列作为样本,实验结果表明,该模型能够显著提高运动员跟踪性能。 Concerning that player tracking is highly correlated with the complexity of movements and game environment,a tracking model based on the game environment feature was proposed.A set of game environment features was extracted from noisy detection to describe the current state of the match,such that how the players are spatially distributed.A random decision forest was trained based on current trajectory and game environment features to build an appropriate simplified affinity model for each player and time instant.The environment-conditioned motion models implicitly incorporate complex inter-object correlations while remaining tractable.Significant performance improvements are showed over existing multi-target tracking algorithms on basketball and football sequences in which contain 10 and 22 players respectively in the duration of several minutes.
作者 秦海玉 廖志武 QIN Hai - yu LIAO Zhi - wu(Department of Computer Science and Technology, Chengdu Neusoft University, Chengdu 611844,China Department of Computer Science, Sichuan Normal University, Chengdu 610101,China)
出处 《计算机工程与设计》 北大核心 2017年第11期3173-3178,共6页 Computer Engineering and Design
基金 四川省教育厅基金项目(14ZA0366)
关键词 跟踪 环境特征 随机决策森林 关联性 运动轨迹 tracking environment features random decision forest correlations trajectory
  • 相关文献

参考文献6

二级参考文献74

  • 1王超,侯丽敏.一种新的高斯混合模型参数估计算法[J].上海大学学报(自然科学版),2005,11(5):475-480. 被引量:3
  • 2马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20
  • 3王兰云,赵拥军.相控阵雷达多目标跟踪原理及数据关联算法研究[J].电光与控制,2007,14(1):30-33. 被引量:8
  • 4杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 5Yilmaz A, Javed O, Shah M. Object tracking: a survey [J]. ACMComputingSurveys, 2006, 38 (4): 1-45.
  • 6Hariharakrishnan K,Schonfeld D. Fast object tracking using adaptive block matching [J].EEE Transactions on Multime-dia, 2005, 7 (5): 853-859.
  • 7ZHOU Hui-yu, YUAN Yuan, SHI Chun-mei. Object tracking using SIFT features and mean shift [J]. Computer Vision and Image Understanding, 2009, 113 (3): 345-352.
  • 8LI Min, ZHANG Zhao-xiang, HUANG Kai-qi, et al. Rapid and robust human detection and tracking based on Omega-shape features [C]. 16th IEEE International Conference on Image Processing, 2009:2545-2548.
  • 9Liu Hong, Yu Ze, Zha Hongbin, et al. Robust human tra- cking based on multi-cue integration and mean-shift [J]. Pattern RecognitionLetters, 2009, 30 (9): 827-837.
  • 10Parrilla E, GinestarD. Handling occlusion in optical flow al- gorithms for object tracking [J]. Computers and Mathematics with Applications, 2008, 56 (3): 733-742.

共引文献24

同被引文献34

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部