期刊文献+

自适应变异差分算法与Powell算法相结合的医学图像配准 被引量:4

Medical Image Registration Based on Self-adaptive DE Algorithm and Powell Algorithm
下载PDF
导出
摘要 图像配准是医学图像处理中的关键技术。文中提出一种自适应差分算法(Difference Algorithm,DE)和Powell算法相结合的多分辨率医学图像配准方法,其不仅可以克服Powell算法依赖初始点的缺点,还可以降低陷入局部极值的几率。首先,对源图像进行多分辨处理,获得包括源图像在内的三层图像;然后,在低分辨率图像上使用自适应DE算法进行全局变换参数的搜索,获得的变换参数作为Powell算法的初始点;最后,在高分辨率图像及源图像上使用Powell算法进行配准。与传统实验相比,该方法具有更高的精确度,能够有效避免局部收敛问题。 Image registration is a key technology in medical image processing.This paper proposed a new multi-resolution medical image registration method based on self-adaptive difference algorithm(DE)and Powell algorithm.It can not only overcome the shortcomings of Powell algorithm depending on the initial,but also can reduce the possibility of getting into local extreme value.Firstly,the source image is processed by multi resolution,and the three layer image including the source image is obtained.Secondly,the adaptive DE algorithm is used to search the global transform parameters on the low resolution images.The transformation parameters are obtained as the initial points of the Powell algorithm.Finally,the Powell algorithm is used for registration in both high resolution images and source images.Compared with traditional experiment,this method has higher precision and can effectively avoid local convergence problem.
出处 《计算机科学》 CSCD 北大核心 2017年第11期297-300,共4页 Computer Science
基金 国家自然科学基金项目(61402204 61572239) 中国博士后项目(2017M611737) 江苏省青蓝工程 江苏大学高级人才项目(14JDG141)资助
关键词 图像配准 差分算法 POWELL算法 互信息 多分辨率 Image registra tion, DE algori thm, Powell algori thm, Mutual informa tion, Multi-resol ution
  • 相关文献

参考文献2

二级参考文献20

  • 1杨帆,张汗灵.遗传算法和Poweli法结合的多分辨率三维图像配准[J].光电子.激光,2006,17(6):755-758. 被引量:19
  • 2卢振泰,陈武凡.医学图像配准算法研究[D].南方医科大学,2008.
  • 3PLUIM J P W, MANTZ J B A, VIERGEVER M A. Mutual information based registration of medical images: a survey [ J ]. IEEE Trans on Medical imaging ,2003,22( 8 ) :986-1004.
  • 4BURT P J ,ADELSON E H. The Laplacian pyramid as a compact im- age Gode[ J ]. IEEE Trans on Communication, 1983,31 (4) :337- 345.
  • 5] MALLAT S G. A theory for muhiresolution signal deempositim: the wavelet representation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989,11 ( 7 ) :6?4-693.
  • 6STROTttER S C,ANDERSON J R, XLI X. Quantitive comparisons of image registration techniques based on high-resolutim: MRI of the brain[ J ]. Journal of Computer Assistant Tomography, 1994,18 (6) :954-962.
  • 7PLU1M J P, MAINTZ J A, VIERGEVER M A. Mutual-information- based registration of medical images: a survey [ J ]. IEEE Trans on Medical Imaging ,2003,22 ( 8 ) :986-1004.
  • 8HE R, NARAYANA P A. Global. optimization of mutual information: application to three-dimensional retrospective registration of magnetic resonance images [ J ]. Computerized Medical Imaging and Graphics,2002,26(4) :277-292.
  • 9MATTES D, HAYNOR D R, VESSELLE H, et al. Nonrigid muhimo- dality image registration [ J ]. Medical Imaging, 2001,4322 ( 1 ) : 1609-1620.
  • 10MATTES D, HAYNOR D R, VESSELLE H, et al. PET-CT image registration in the chest using free-form deformations[ J ]. IEEE Trans on Medical Imaging,2003,22( 1 ) :120-128.

共引文献13

同被引文献17

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部