期刊文献+

基于TensorFlow预训练模型快速、精准的图像分类器 被引量:12

A Fast & Accurate Image Classifier Based on the Pre-training Models of TensorFlow
下载PDF
导出
摘要 图像分类是根据图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读.TensorFlow是Google基于DistBelief进行研发的新一代人工智能学习系统,TensorFlow是将复杂的数据结构传输至人工智能神经网络中进行分析和处理过程的系统.根据TensorFlow的预训练模型建立了一个低成本、快速、精准的图像分类器,根据实验结果,准确率达98%. Image classification is an approach for processing images to distinguish the different types of target according to individual characteristics reflected in images.For the sake of replacing the human visual interpretation,it takes advantage of the computer version to carry on the quantitative analysis to images and classifies each pixel or regions in an image or the image into one of several categories.TensorFlow is a new machine-learning system developed by Google based on DistBelief.In TensorFlow,in order to analyze and process images,one needs to transfer the complex data structure to an artificial intelligence neural network.In this paper,we present a low-cost,fast and accurate image classifier on the basis of the pretraining models of TensorFlow.Experiment results show the classifier attains accuracy 98%.
作者 曹大有 胥帅
出处 《汉江师范学院学报》 2017年第3期27-32,共6页 Journal of Hanjiang Normal University
基金 湖北省教育厅2015年度人文社会科学研究重点项目<大数据时代大学生个性化学习技术的研究>(15D137) 汉江师范学院2014年度教学研究项目<大数据时代大学生个性化学习技术的研究>(2014003)
关键词 图像分类 深度学习 人工智能 卷积神经网络 image classification deep learning artificial intelligence conventional neural networks
  • 相关文献

参考文献1

二级参考文献28

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献611

同被引文献60

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部