期刊文献+

结合预处理BiCGStab和CUDA的BLT快速并行前向方法 被引量:1

Fast Parallel Forward Method of BLT Combining Preconditioned Bi CGStab and CUDA
下载PDF
导出
摘要 针对基于简化球谐波(simplified spherical harmonics,SPN)方程开展生物发光断层成像(bioluminescence tomography,BLT)前向问题研究时计算量大、求解速度偏慢的问题,提出了一种基于稳定双共轭梯度下降(biconjugate gradient stabilized,Bi CGStab)的快速并行求解算法.该算法结合不完全Cholesky分解的预处理方式与压缩行格式存储法(compressed row storage scheme,CSR)的稀疏矩阵存储方式,并采用统一计算设备架构(compute unified device architecture,CUDA)实现了并行加速.数值仿真结果表明,该算法在保证前向问题求解准确度的同时可以极大地缩短求解时间. A fast parallel algorithm based on Bi-conjugate gradient stabilized( BiCGStab) was proposed to solve the simplified spherical harmonics( SPn) equations to reducethe computational burden and improve computational efficiency for forward problem of bioluminescence tomography ( BLT). In the algorithm, preconditioned method of incomplete-Cholesky factorization and sparse matrix’s compressed row storage scheme (CSR) representing method were adopted. Furthermore, compute unified device architecture (CUDA) parallel programming model was used to implement parallel accelerating. The results of numerical simulation show that the proposed algorithm not only can ensure the solution accuracy of the forward problem but also greatly shorten the equation-solving time.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2017年第11期1658-1665,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(81370038) 北京市自然科学基金资助项目(7142012) 北京市科技新星计划资助项目(Z141101001814107)
关键词 生物发光断层成像 简化球谐波方程 预处理稳定双共轭梯度下降算法 统一计算设备架构(CUDA) bioluminescence tomography simplified spherical harmonics equations preconditioned bi-conjugate gradient stabilized method compute unified device architecture (CUDA)
  • 相关文献

参考文献1

二级参考文献13

  • 1Massoud T F, Gambhir S S. Molecular Imaging in Living Subjects: Seeing Fundamental Biological Processes in a New Light [J]. Genes & Development, 2003, 17(5): 545-580.
  • 2Ntziachristos V, Ripoll J, Wang L V, et al. Looking and Listening to Light: the Evolution of Whole Body Photonic Imaging [J]. Nature Biotechnology, 2005, 23(3): 313-320.
  • 3Ale A, Ermolayev V, Herzog E, et al. FMT-XCT: in Vivo Animal Studies with Hybrid Fluorescence Molecular Tomography-X-Ray Computed Tomography [J]. Nature methods, 2012, 9(6): 615-620.
  • 4Stelter L, Evans M J, Jungbluth A A, et al. Imaging of Tumor Vascularization Using Fluorescence Molecular Tomography yo Monitor Arginine Deiminase Treatment In Melanoma[J]. Molecular Imaging, 2013, 12(1): 67-73.
  • 5Deliolanis N C, Ntziachristos V. Fluorescence Molecular Tomography of Brain Tumors in Mice [J]. Cold Spring Harbor Protocols, 2013, 2013(5): 074245.
  • 6Ale A, Schulz R B, Sarantopoulos A, et al. Imaging performance of a Hybrid X-Ray Computed Tomography-Fluorescence Molecular Tomography System Using Priors [J]. Medical Physics, 2010, 37(5): 1976-1986.
  • 7Klose A D, Ntziachristos V, Hielscher A. The Inverse Source Problem Based on the Radiative Transfer Equation in Optical Molecular Imaging [J]. Journal of Computational Physics, 2005, 202(1): 323-345.
  • 8Ducros N, Bassi A, Valentini G, et al. Fluorescence Molecular Tomography of an Animal Model Using Structured Light Rotating View Acquisition [J]. Journal of Biomedical Optics, 2013, 18(2): 020503.
  • 9Klose A D, Larsen E W. Light Transport In Biological Tissue Based on the Simplified Spherical Harmonics Equations [J]. Journal of Computational Physics, 2006, 220(1): 441-470.
  • 10Han D, Tian J, Liu K, et al. Sparsity Promoting Tomographic Fluorescence Imaging with Simplified Spherical Harmonics Approximation [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2564-2567.

共引文献1

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部