摘要
发展了一种检测血液和环维黄杨星D(CVB-D)药片中CVB-D的高效液相色谱-电化学检测方法(HPLC-ECD)。由于使用高灵敏度的掺硼金刚石电极(BDD)、可为碱性化合物提供更好峰形的C18HCE色谱柱和优化的流动相,该方法可提供更高的检测灵敏度,检出限(LOD)和定量限(LOQ)分别为0.198和0.297μg/L。该方法灵敏度比紫外(UV)、蒸发光散射(ELSD)、电雾式检测(CAD)和质谱(MS)方法灵敏度分别高12 727、11 481、2 630和16.8倍。同时,该方法可提供较宽的线性范围(0.297~1 891μg/L),并且操作过程比MS方法更简单。该方法用于低质量浓度(59.1μg/L)样品的检测也可以提供较好的日内(峰面积RSD<5.08%)和日间(峰面积RSD<5.57%)重复性。此外,将该方法稍做修改,还可用于其他碱性化合物的检测。
A high-performance liquid chromatography-electrochemical detection ( HPLC-ECD) method was developed to determine cyclovirobuxin D (CVB-D) levels in tablets and human blood samples. A column with a positive charge-modified C18 stationary phase, C18HCE, was selected to analyze CVB-D, because it provided a sharper and more symmetric peak for CVB-D than conventional C18 stationary phase. Two types of working electrode materials, glassy carbon (GC) and boron-doped diamond (BDD), were evaluated. BDD was found to provide better sensitivity than GC owing to its lower background current and baseline noise. Utilizing the BDD electrode, C18HCE column, and optimized mobile phase composition, the developed HPLC-ECD method showed a much better sensitivity. The limit of detection and limit of quantification of the HPLC-ECD method for CVB-D were 0. 198 and 0.297 ^g^L, respectively. It was approximately 12 727, 11481, and 2 630 times more sensitive than ultraviolet (UV), evaporative light scattering detection, and charged aerosol detection, respec-tively. The sensitivity of the developed HPLC-ECD method was comparable or even better (16. 8 times) than reported mass spectrometry (MS) methods for the determination of CVB-D. Additionally, it offered a much wider linear dynamic range (up to 4 orders of magnitude, 0. 297-1 891 ^g^L) and was much less complicated than MS methods for determination of CVB-D. The developed HPLC-ECD method can be used for determination of CVB-D at both high and low concentrations. Good intra-day (relative standard deviation (RSD) of peak area 〈5. 08%) and inter-day (RSD of peak area〈5. 57%) reproducibilities of the developed HPLC-ECD method were obtained even for a low mass concentration (59. 1 |xg^L) sample. After the optimized parameters were acquired, this method was applied to the quantitative analysis of CVB-D in CVB-D tablets and human blood samples. With a slight modification, the current HPLC-ECD method can also be applied to analyze many other basic compounds including basic drugs and environmental pollutants.
出处
《色谱》
CAS
CSCD
北大核心
2017年第11期1152-1159,共8页
Chinese Journal of Chromatography