期刊文献+

基于词重要性的Markov网络查询扩展模型 被引量:1

Markov Network Query Expansion Model Based on Term Importance
下载PDF
导出
摘要 词项权重已经广泛应用于信息检索模型中,针对传统的词项独立性假设的词袋模型的问题,本文将基于词重要性的词项权重的计算方法应用于Markov网络查询扩展模型中。该词项权重的计算方法须先建立文档的词项图,然后根据词项图得到词项的共现矩阵和词项间的概率转移矩阵,最后利用Markov链的计算方法得到词的权重。将得到的词项权重代入Markov网络扩展模型中,在5个标准数据集上的实验结果表明,采用基于词重要性的Markov网络查询扩展模型的检索结果优于传统的基于词袋的检索结果。 The weight of term has been widely used in models of information retrieved.In order to solve the problem of independence assumption of word bags mode for traditional model,the weight of term based on the importance of term will be used in the Markov network query expansion model.In order to calculate the weight of the term,firstly we must establish the graph-of-word of documents.Then according to the graph-of-word,we get the matrix that terms occur together and the probability transfer matrix between terms.Lastly,we use the chain of Markov to get the weight of term.By putting the weight of term into the Markov network query expansion model,the experiment results on 5 standard datasets show that the search results of using Markov network query expansion model based on term importance are better than those based on traditional model of word bags.
出处 《计算机与现代化》 2017年第11期89-94,共6页 Computer and Modernization
关键词 词项图 MARKOV网络 查询扩展 graph-of-word Markov network query expansion
  • 相关文献

参考文献4

二级参考文献36

  • 1左家莉,王明文,王希.基于Markov网络的信息检索扩展模型[J].清华大学学报(自然科学版),2005,45(S1):1847-1852. 被引量:9
  • 2黄萱菁,张奇,邱锡鹏.现代信息检索[M].第一版.机械工业出版社,2012.
  • 3Zhai C,Lafferty J.Model-based feedback in the language modeling approach to information retrieval[C]//Proceedings of the tenth international conference on Information and knowledge management.ACM,2001:403-410.
  • 4Tao T,Zhai C X.A mixture clustering model for pseudo feedback in information retrieval[M]//Classification,Clustering,and Data Mining Applications.Springer Berlin Heidelberg,2004:541-551.
  • 5Soskin N,Kurland O,Domshlak C.Navigating in the dark:Modeling uncertainty in ad hoc retrieval using multiple relevance models[M]//Advances in Information Retrieval Theory.Springer Berlin Heidelberg,2009:79-91.
  • 6Tao T,Zhai C X.Regularized estimation of mixture models for robust pseudo-relevance feedback[C]//Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval.ACM,2006:162-169.
  • 7Lv Y,Zhai C X,Chen W.A boosting approach to improving pseudo-relevance feedback[C]//Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval.ACM,2011:165-174.
  • 8Lee K S,Croft W B,Allan J.A cluster-based resampling method for pseudo-relevance feedback[C]//Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval.ACM,2008:235-242.
  • 9王斌.信息检索导论[M].第一版.人民邮电出版社,2010.
  • 10Metzler D,Croft W B.Latent concept expansion using markov random fields[C]//Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval.ACM,2007:311-318.

共引文献25

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部