期刊文献+

基于改进的卷积神经网络的中文情感分类 被引量:17

Chinese text sentiment classification based on improved convolutional neural networks
下载PDF
导出
摘要 探究了基于卷积神经网络的句子级别的中文文本情感分类,模型以文本经过预处理后得到的词向量作为输入。传统的卷积神经网络是由线性卷积层、池化层和全连接层堆叠起来的,提出以跨通道卷积层替代传统线性卷积滤波器,对基本的卷积神经网络进行改进,提高网络的表达能力。实验表明,改进后的卷积神经网络在保证训练速度的情况下,识别率达到91.89%,优于传统的卷积神经网络,有较好的识别能力。 A method of sentiment classification based on convolutional neural networks for Chinese comments, which is expressed by pre-train word vectors, is presented. Classic convolutional neural networks is stacked by convolutional layers,pooling layers and fully connected layer. An improved convolutional neural networks in which a cascade cross channel convolutional layer replaces the traditional linear convolutional filter is proposed to improve and enhance the generalization of the network. The experimental results show that the improved convolutional neural networks achieves better performance with the recognition rate of 91.89% and an acceptable training speed, superior to basic convolutional neural networks.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第22期111-115,共5页 Computer Engineering and Applications
关键词 情感分类 深度学习 词向量 卷积神经网络 sentimentclassification deeplearning wordembedding convolutionalneuralnetworks
  • 相关文献

参考文献2

二级参考文献45

  • 1Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.
  • 2Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86.
  • 3Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE.
  • 4Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001.
  • 5Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006.
  • 6Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125.
  • 7P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002.
  • 8P. Subasic and A. Huettner. Affect analysis of text using fuzzy semantic typing[A]. IEEE-FS, 9:483 496, Aug. 2001.
  • 9Hugo Liu, Henry Lieberman, and Ted Selker. A model of textual affect sensing using real-world knowl- edge[A]. In: Proceedings of the Seventh International Conference on Intelligent User Interfaces [C].2003. 125-132.
  • 10Wei-Hao Lin, Theresa Wilson, Janyce Wiebe and Alexander Hauptmann. Which Side are You on? Identifying Perspectives at the Document and Sentence Levels[A]. In: Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLLX)[C]. New York City: June 2006, 109-116,

共引文献753

同被引文献110

引证文献17

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部