期刊文献+

基于改进磷虾群算法的SVDD参数优化 被引量:8

Parameter optimization for SVDD based on improved krill herd algorithm
下载PDF
导出
摘要 支持向量数据描述(SVDD)是构造单类数据描述的分类算法,惩罚参数C和核参数σ作为影响SVDD分类效果的关键,其合理选取一直是个难点。针对这一问题,提出了一种基于改进磷虾群算法的SVDD参数优化算法(IKH-SVDD)。依据仿真实验,分析参数C和σ对描述边界的影响;引入磷虾群算法并分析其优劣,通过在随机扩散行为中定义扰动因子,增强算法的全局搜索能力;将一种新的精英选择和保留策略引入迭代过程,提高算法的收敛精度;将改进的磷虾群算法引入SVDD参数优化过程,构建了IKH-SVDD参数优化模型。基于UCI标准数据库进行实验并与其他几种参数优化算法进行比较,结果表明了IKH-SVDD算法具有更高的分类准确性。 Support Vector Data Description(SVDD)is a classification algorithm for constructing one-class data description. Penalty parameter C and kernel parameter σ are two key points to affect the classification performance of SVDD and it has always been a difficulty to select reasonably. Focused on this problem, a parameter optimization algorithm of SVDD based on improved krill algorithm is proposed. Firstly, this paper analyzes the C and σ parameters' influence on learning models of SVDD through simulation experiment; Then, this paper introduces the krill herd algorithm and analyzes its merits and demerits, defines the disturbance factor in random diffusion behaviors to enhance the global exploratory; Furthermore, a new elitist election and reserving strategy is introduced into the iterative process to improve the accuracy of convergence; Finally, this paper introduces the improved krill herd algorithm into the parameters optimization process of SVDD and establishes the IKH-SVDD parameters optimization model. Simulation with the UCI benchmark datasets indicates that KH-SVDD has better classification accuracy than the current parameter optimization algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第22期137-142,216,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61273275)
关键词 支持向量数据描述 改进磷虾群算法 参数优化 精英选择和保留策略 supportvectordatadescription improvedkrillherdalgorithm parametersoptimization elitistelectionandreservingstrategy
  • 相关文献

参考文献8

二级参考文献76

  • 1施延洲,焦林生,姚啸林,钟平,邵文长.超(超)临界汽轮机组滑压运行优化试验[J].热力发电,2013,42(12):8-12. 被引量:26
  • 2刘攀,郭生练,庞博,王才君,张洪刚.三峡水库运行初期蓄水调度函数的神经网络模型研究及改进[J].水力发电学报,2006,25(2):83-89. 被引量:23
  • 3汪鹏,杨士元.模拟电路故障诊断测试节点优选新算法[J].计算机学报,2006,29(10):1780-1785. 被引量:18
  • 4徐鑫鑫,刘涤尘,黄涌.基于VC++和Matlab混合编程实现电力故障再现及分析系统研究[J].电力自动化设备,2006,26(12):38-40. 被引量:5
  • 5Wang L Y,Zhao W G,Liu Y.Rolling bearing fault diagnosis based on wavelet packet-neural network characteristic entropy[J].Advanced Materials Research,2010,108-111:1075-1079.
  • 6Tax D M J,Duin R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20(11-13):1191-1199.
  • 7Pan Y N,Chen J,Guo L.Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description [J].Mechanical Systems and Signal Processing,2009,23(3):669-681.
  • 8Mac Queen J B.Some methods for classification and analysis of multivariate observations [C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,USA:University of California Press,1967:281-297.
  • 9Wu X N,Hu C Y,Wang Y.Model checking algorithm based on ant colony swarm intelligence[J].Communication in Computer and Information Science,2009,51(7):361-368.
  • 10Singh S,Markou M.An approach to novelty detection applied to the classification of image regions[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(4):396-407.

共引文献118

同被引文献78

引证文献8

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部