期刊文献+

基于FPGA的实时SGM匹配算法研究与实现 被引量:2

Research and implementation of real-time semi global matching algorithm based on FPGA stereo vision
下载PDF
导出
摘要 传统SGM算法,运算复杂度高,硬件资源需求量大,难以应用到实时嵌入式系统中。为此提出一种基于FPGA嵌入式平台的实时SGM(Real-Time SGM,RT-SGM)算法。RT-SGM选取三个方向作为匹配算法的优化方向;设计新的算法的结构,使该算法能运行在Pipeline状态下;提出一种新型中值滤波算法对结果进行优化。在FPGA硬件平台上完成实验。实验结果表明,RT-SGM运行速度相比于传统SGM算法提高了30%,而在资源需求上只有传统SGM算法的一半,同时其精度与传统SGM算法相当,适合应用到实时嵌入式系统中。 Traditional Semi Global Matching algorithm is not suitable for running on real-time embedded platform because of its complex structure, and high demand for hardware resources. Thus, this paper puts forward the Real-Time SGM algorithm based on FPGA embedded platform. Real-Time SGM selects three directions as the optimization direction to reduce the demand for hardware resources. Then, the algorithm can run in the condition of Pipeline by designing a new structure,and improve the operation speed. Moreover, it puts forward a new kind of median filter algorithm to optimize the results.Finally, simulation is done on the PFGA platform. Experimental results show that compared with the original algorithm,the new algorithm has lower resource requirements, and has a large increase in the speed of the algorithm, which is suitable for running in low power consumption embedded system.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第22期163-168,共6页 Computer Engineering and Applications
基金 福建省科技重大平台项目(No.2014H2002) 福建省科技重大专项(No.2014HZ0004-3) 国家科技支撑计划项目(No.2015BAF24B01)
关键词 现场可编程门阵列(FPGA) 立体匹配 实时SGM算法 Pipeline状态 新型中值滤波 FieldProgrammableGateArray (FPGA) stereomatching real-timeSGM pipeline newmedian-filter
  • 相关文献

参考文献4

二级参考文献72

  • 1唐丽,吴成柯,刘侍刚,颜尧平.基于区域增长的立体像对稠密匹配算法[J].计算机学报,2004,27(7):936-943. 被引量:27
  • 2Mart D C. A Computational Investigation into the Human Representation and Processing of Visual Information [ M ]. San Francisco: W. H. Freeman and company, 1982.
  • 3Nalpantidis L, Gasteratos A. Stereo vision for robotic ap- plications in the presence of non-ideal lighting conditions [ J ]. Image and Vision Computing, 2010, 28 ( 6 ) : 940-951.
  • 4Ambrosch K, Kubinger W. Accurate hardware-based ster- eo vision[ J ]. Computer Vision and Image Understanding, 2010,114 : 1303-1316.
  • 5Nuan Shao,Hui Guang Li,Le Liu,et al. Stereo vision robot obstacle detection based on the SIFT [ R]. 2010 Second WRI Global Congress on Intelligent Systems ,2010.
  • 6Sizintsev M, Wildes R P. Coarse-to-fine stereo vision with accurate 3D boundaries [ J ]. Image and Vision Computing,2010,28 : 352 - 366.
  • 7Boykov Y,Veksler O, Zabih R. Fast Approximate energy minimization via graph cut[J]. Pattern Analysis and Ma- chine Intelligence ,2002,23 ( 11 ) : 1222-1239.
  • 8Cai J. Integration of optical flow and dynamic program- ming for stereo matching [ J ]. IET Image Processing, 2012,6(3) :205-212.
  • 9Mohamed E1 Ansari, Mazoul A, Bensrhair A, et al. A Real- time Spatio-Temporal Stereo Matching for Road Applica- tions[ C ]//14th International IEEE Conference on Intelli- gent Transportation Systems. 2011.
  • 10Nguyen M, Yuk Hin Chan, Delmas P, et al. Symmetric Dynamic Programming Stereo Using Block MatchingGuidance [ C ]//28t h International Conference on Image and Vision Computing New Zealand. 2013.

共引文献72

同被引文献19

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部