期刊文献+

结合差分曲率的空间模糊C均值图像分割算法 被引量:1

Spatial Fuzzy C-Means Clustering Incorporating with Difference Curvature for Image Segmentation
下载PDF
导出
摘要 针对基于空间信息的模糊C均值图像分割算法(sFCM)在对含噪图像分割时,图像的噪声和边缘细节不能同时得到较为正确分割的问题,本文提出了一种结合差分曲率的改进sFCM算法.差分曲率(difference curvature)可以有效地区分图像边缘和平坦区.将差分曲率引入到sFCM算法的空间函数中,算法的函数相关性参数在每个像素点处自适应取值,使改进算法在抗噪性能提高的同时,对图像细节有着更好的分割效果.实验结果表明:在对含噪图像进行分割时,本文提出的改进算法相比于sFCM及其衍生算法具有更好的模糊划分效果,并有效地提升了sFCM算法的抗噪性和对边缘细节的保护能力. For the problem of noise and details can not be segmented correctly at the same time when applying spatial information fuzzy c-means clustering algorithm(sFCM)to noise image segmentation,an improved algorithm of sFCM incorporating with difference curvature was proposed in this paper.Difference curvature can distinguish edges from ramp regions effectively.By applying difference curvature to the spatial function of sFCM,the function correlation parameters are determined adaptively in a single pixel so that the adapted method is more robust to noise,and results in better segmentation performance for details in the meantime.The experimental results indicate that the improved method achieve competitive results in fuzzy clustering,compared to sFCM and its variants.The noise tolerance and detail-preserving property are promoted effectively.
作者 李国熊 宋小鹏 张权 桂志国 LI Guoxiong SONG Xiaopeng ZHANG Quan GUI Zhiguo(State Key Laboratory of Electronic Measurement Technology (North University of China), Taiyuan 030051, China Instrument Science & Dynamic Measurement, Ministry of Education Key laboratory of (North University of China), Taiyuan 030051, China)
出处 《测试技术学报》 2017年第5期392-397,共6页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(61671413) 山西省自然科学基金资助项目(2015011046)
关键词 模糊聚类 图像分割 图像去噪 空间信息 差分曲率 Fuzzy c-means clustering image segmentation image noise spatial information difference curvature
  • 相关文献

参考文献1

二级参考文献13

  • 1DAI F, ZHENG N, XUE J. Image smoothing and sharpening based on nonlinear diffusion equation [J]. Signal Processing,2008, 88 (11): 2850-2855.
  • 2ZHONG J, SUN H. Wavelet-based multi-scale anisotropie dif- fusion with adaptive statistical analysis for image restoration [J]. IEEE Transactions on Circuits and Systems, 2008, 55 (9) : 2716-2725.
  • 3Shin-Min Chao, Du-Ming Tsai. An improved anisotropic diffu- sion model for detail-and edge-preserving smoothing [J]. Pat- tern Reeognition Letters, 2010, 31 (13): 2012 2023.
  • 4CHEN Q, MontesinosP, SUN Q, et al. Adaptive total varia- tion denoising based on difference curvature [J]. Image and Vi- sion Computing, 2010, 28 (3): 298-306.
  • 5GUO Z, SUN J, ZHANG D, et al. Adaptive Perona-Malik model based on the variable exponent for image denoising [J]. IEEE Transactions on Image Processing, 2012, 21 (3)I 958-967.
  • 6Mohammad RH. An anisotropic fourth-order diffusion filter for image noise removal [J ]. Springer Science + Business Media, 2011, 92 (2): 177-191.
  • 7ZHANG J, LI L, YANG J. An enhanced fourth-order PDE model based on Laplacian and gradieat operator [C] //IEEE 12th International Congerence on Computer and Information Technology, 2012: 14,4-146.
  • 8LIU X, HUANG L, GUO Z. Adaptive fourth-order partial differential equation filter for image denoising [J]. Applied Mathematics Letters, 2011, 24 (8): 1282-1288.
  • 9LU B, LIU Q. An edge-preserving fourth order PDE method for image denoising [C] //2nd International Conference on Advanced Computer Control. Shenyang: IEEE, 2010: 153-157.
  • 10陈强,郑钰辉,孙权森,夏德深.片相似性各项异性扩散图像去噪[J].计算机研究与发展,2010,47(1):33-42. 被引量:23

共引文献5

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部