期刊文献+

单自由度带支撑Maxwell阻尼减震系统随机响应标准振子分解法

Standard oscillator decomposition method for single-degree-freedom system with Maxwell damper under earthquake
下载PDF
导出
摘要 为建立耗能结构保护系统的抗震设计方法,针对单自由度带支撑Maxwell阻尼器减震系统随机地震响应问题进行系统研究.首先,考虑阻尼器设置支撑的影响,建立了时域非扩阶微分积分混合动力方程;然后,采用传递函数法,获得了减震系统在任意激励条件下位移、速度和阻尼器受力的时域非扩阶瞬态响应精确解;运用标准振子分解,将结构响应的方差解析式精确分解为一阶和二阶标准振子响应方差的线性组合;最后,用限带白噪声激励的线性组合逼近任意指定形状的谱和更接近于实际激励,且物理含义明确,并用数值积分法与本文方法作对比,验证了本文的正确性,从而获得了结构基于限带白噪声平稳随机激励响应特性分析的一整套解析分析法. Stochastic responses for a single-degree-freedom(SDF) system with Maxwell damper are systematically investigated to establish the design method for protecting energy consumption system against earthquake. Firstly,structural dynamic integral-differential equations are built on account of influence of supporting stiffness.Secondly, by using transfer function method, exact time-domain solutions of the system are obtained under arbitrary excitation and non-zero initial conditions, of which are displacement and speed of the system and force of the damper. Thirdly, the variances of structural response are accurately disintegrated into linear combinations of oneorder standard variance and second-order standard variance oscillators based on the methods of standard oscillator decomposition. Finally, linear combinations of band-limited white noise excitations are applied to approximate arbitrary shape spectrum, which are more close to the actual excitations and easy to understand in physics. A example shows that the presented method is verified by comparison with numerical integration method. So, a whole set of analytical solutions for dynamic characteristics of a structure with Maxwell damper under limited-band white noise excitation is obtained.
出处 《广西科技大学学报》 2017年第4期13-18,共6页 Journal of Guangxi University of Science and Technology
基金 国家自然科学基金项目(51468005) 广西自然科学基金项目(2014GXNSFAA118315)资助
关键词 标准振子分解 限带白噪声 支撑 精确解 MAXWELL阻尼器 standard oscillator decomposition limited-band white noise brace analytical solution Maxwell dampers
  • 相关文献

参考文献3

二级参考文献41

  • 1朱位秋,蔡国强.NONLINEAR STOCHASTIC DYNAMICS: A SURVEY OF RECENT DEVELOPMENTS[J].Acta Mechanica Sinica,2002,18(6):551-566. 被引量:19
  • 2朱位秋.非线性随机振动理论的近期进展[J].力学进展,1994,24(2):163-172. 被引量:18
  • 3朱位秋.随机振动[M].北京:科学出版社,1998..
  • 4Soong T T,Dargush G F.Passive energy dissipationsystems in structural engineering[M].England:JohnWiley and Ltd,1997:141-143.
  • 5欧进萍,吴斌,龙旭.消能减震结构的设计,GB57011-2001建筑抗震设计规范背景材料[S]//戴国莹,王亚勇,主编.北京:中国建筑工业出版社,2005:323-330.
  • 6Johnson C D,Kienhole D A.Finite element prediction ofdamping in structures with constrained viscoelasticlayers[J].AIAA,1982,20(9):1284-1290.
  • 7Inaudi J A,Kelly J M.Modal equations of linearstructures with viscoelastic dampers[J].EarthquakeEngineering and Structural Dynamics,1995,24:145-151.
  • 8Palmeri A,Ricciardelli F.Effects of viscoelastic memoryon the buffeting response of tall buildings[J].Wind andStructures,2004,7:89-106.
  • 9Zhu W Q.Nonlinear stochastic dynamics and control inHamiltonian formulation[J].Applied MechanicsReviews,2006,59(6):230-248.
  • 10Park S W.Analytical modeling of viscoelastic dampersfor structural and vibration control[J].InternationalJournal of Solids and Structures,2001,38:8065-8092.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部