期刊文献+

甜高粱BIC1、BIC2的克隆及与蓝光受体Cryptochromes的相互作用分析

Cloning of BIC1 and BIC2 Genes from Sweet Sorghum and Analysis of the Interacting with Blue-Light Receptor Cryptochromes
原文传递
导出
摘要 通过拟南芥、水稻和甜高粱BIC1、BIC2氨基酸同源序列比对,发现blue-light inhibitor of cryptochromes 1(BIC1)和blue-light inhibitor of cryptochromes 2(BIC2)有很高的相似性,尤其在与Cryptochromes相互作用的CID结构域。并通过12个不同物种BICs蛋白的进化分析发现,单子叶、双子叶和低等植物的BIC1和BIC2有明显的分支,而甜高粱BIC1和BIC2分别与玉米的BIC1和水稻的BIC2亲缘关系最近,这些结果暗示着BICs在单子叶和双子叶植物间进化中可能发生了分歧但功能可能是保守的。通过Sb BIC1、Sb BIC2与拟南芥CRY1、CRY2及甜高粱CRY1a、CRY1b的酵母双杂交分析发现,Sb BIC2与拟南芥CRY1、CRY2及甜高粱CRY1a、CRY1b都能发生蓝光依赖的相互作用,这个结果说明在甜高粱中Sb BIC2可能参与了CRYs调控的光形态建成。 Blue-light inhibitor of cryptochromes 1(BIC1) and blue-light inhibitor of cryptochromes 2(BIC2) shared high similarity by amino acid sequences alignment of Arabidopsis, rice and sweet sorghum, especially in the CID domain that interacted with cryptochromes. The obvious boundaries of BIC1 and BIC2 were founded in the dicotyledonous, monocotyledonous and low plants by phylogenetic analysis from 12 different plant species BICs proteins,however sweet sorghum BIC1 and BIC2 were most closely related to maize BIC1 and rice BIC2, respectively.These results suggested that BICs may had a divergence in evolution between monocotyledonous and dicotyledonous, but be conserved in function. Sb BIC1 and Sb BIC2 with At CRY1, At CRY2, Sb CRY1 a or Sb CRY1 b interaction assay indicated Sb BIC2 depend on blue light interacted with At CRY1, At CRY2, Sb CRY1 a or Sb CRY1 b.The results suggested Sb BIC2 may be involved in CRYs-regulated photomorphogenesis in sweet sorghum.
出处 《分子植物育种》 CAS CSCD 北大核心 2017年第9期3410-3416,共7页 Molecular Plant Breeding
关键词 甜高粱 BIC1 BIC2 蓝光受体 蛋白质相互作用 Sweet sorghum, BIC 1, BIC2, Blue light receptor, Protein interaction
  • 相关文献

参考文献1

二级参考文献65

  • 1Heins, L., Mentzel, H., Schmid, A., Benz, R., and Schmitz, U.K. (1994). Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J. Biol. Chem. 269, 26402-26410.
  • 2Ho, S.N., Biggar, S.R., Spencer, D.M., Schreiber, S.L., and Crabtree, G.R. (1996). Dimeric ligands define a role for transcriptional activation domains in reinitiation. Nature 382, 822-826.
  • 3Holm, M., Ma, L.G., Qu, L.J., and Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16, 1247-1259.
  • 4Jackson, J.A., and Jenkins, G.I. (1995). Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis by4 mutant. Planta 197, 233-239.
  • 5Jefferson, R.A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405.
  • 6Kleiner, O., Kircher, S., Harter, K., and Batschauer, A. (1999). Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 19, 289-296.
  • 7Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G.P., and Schell, J. (1989). High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl Acad. Sci. USA 86, 8467-8471.
  • 8Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383-396.
  • 9Kubasek, W.L., Shirley, B.W., McKillop, A., Goodman, H.M., Briggs, W., and Ausubel, F.M. (1992). Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4, 1229-1236.
  • 10Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680- 685.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部