摘要
从科学哲学的视角,采用定性与定量相结合的混合研究路径,以体育人文社会学博士学位论文为考察对象,以文献资料、统计分析等研究方法,分析1999—2015年296篇体育人文博士学位论文的研究对象问题,以期提高研究对象的选用水平,促进科学知识的规范生产,为建立体育学博士论文科学的评价体系提供理论与实践参考。研究发现:体育人文社会学博士学位论文应注意研究对象的确定性即理论确定性与经验确定性;理论性即由经验向理论的转化;逻辑性即研究问题与研究对象的逻辑关联。由于研究对象之于博士论文有重要作用,研究对象的择定需要一定的技术手段,所以研究对象的合理选用应该坚持源于理论、承载问题、适于方法的原则。以明确研究对象之于博士论文选题的重要性,以掌握日常问题到科学问题的转化逻辑,以正确构建科学问题来聚焦整个研究,促进研究对象的合理选用,保证其科学研究的本质特征。
This study analyzed the problems of research object in 296 doctoral dissertations of humanities and sociology in physical education( from 1999 to 2015) from the perspective of science philosophy by combining qualitative and quantitative approaches,aimed to improve the level of research objects selection and promote the standard production of scientific knowledge,and provide theoretical and practical references for the establishment of a scientific evaluation system of doctoral dissertations in physical education. The study found that doctoral dissertations of humanities and sociology in physical education should confirm research object's certainty( theoretical certainty and empirical certainty),theory( from experience to theory) and logic( logical relation between research object and research question). The research object plays an important role in the doctoral dissertations,so the choice of the research object needs some technical means. The reasonable selection of research object should follow the principle of "from theory,bearing problems and suitable method",in order to define the role of research object in doctoral dissertation,grasp the transformation logic from daily problems to scientific problems,correctly construct scientific issues to focus on the whole research,promote the rational selection of research object,and ensure the essential features of scientific research.
出处
《北京体育大学学报》
CSSCI
北大核心
2017年第10期17-23,共7页
Journal of Beijing Sport University
基金
国家社会科学基金项目(项目编号:17BTY104)
关键词
体育人文社会学
博士学位论文
科学方法
研究对象
科学问题
统计分析
humanities and sociology in physical education
doctoral dissertation
scientific method
research ob-ject
scientific problem
statistical analysis