期刊文献+

压力消失时具有广义Chaplygin气体的Aw-Rascle交通模型Riemann解的极限

Vanishing Pressure Limit of Riemann Solutions to the Aw-Rascle Model for Generalized Chaplygin Gas
下载PDF
导出
摘要 该文研究带有广义Chaplygin气体的Aw-Rascle(AR)交通模型的黎曼问题.在广义Rankine-Hugoniot条件和熵条件下,证明了Delta激波存在唯一性.Delta激波有助于描述严重的交通拥堵.更重要的是,证实了广义Chaplygin气体的Aw-Rascle交通模型的黎曼解在交通压力消失时收敛于带相同的初值无压气体动力学系统的黎曼解. The Riemann problem for the Aw-Rascle (AR) traffic model with generalized Chap- lygin gas is considered. Its first eigenvalue is genuinely nonlinear and the second eigenvalue is linearly degenerate, but the nonclassical solutions appear. The Riemann solutions are con- structed, and the generalized Rankine-Hugoniot conditions and the ^-entropy condition are clarified. In particular, the existence and uniqueness of (^-shock waves are established under the generalized Rankine-Hugoniot conditions and entropy condition. The delta shock may be useful for description of the serious traffic jam. More importantly, it is proved that the limits of the Riemann solutions of the above AR traffic model are exactly those of the pressureless gas dynamics system with the same Riemann initial data as the traffic pressure vanishes.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2017年第5期917-930,共14页 Acta Mathematica Scientia
基金 福建省自然科学基金(2015J01014)~~
关键词 AR交通模型 黎曼解 广义R-H条件 Delta激波 Chaplygin压力 熵条件 Aw-Rascle traffic model Generalized Chaplygin pressure Riemann problem Generalized Rankine-Hugoniot relation Delta shock wave Entropy condition.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部