期刊文献+

复扇形指标集上的分布混沌

Distributional Chaos on Complex Sectors
下载PDF
导出
摘要 该文刻画了具有扇形指标集的转移半群在权函数空间中上的稠密分布混沌.由相容权函数的可积性,以及指标集子集的上稠性,对转移半群的分布混沌性给出了一个充分条件.此外,该文还对指标集进行了讨论,给出了转移半群在指标集的某些子集上也是分布混沌的. We characterize the densely distributional chaos for the translation semigroup, with a sector in the complex plane as index set, defined on a weighted function space. A suificient condition is given for the translation semigroup to be distributionally chaotic in terms of the the integrability of the admissible weight function, and in terms of the upper density of a subset of the index set. In addition, we study the index set and show that the translation semigroup is also distributionally chaotic on some subsets of the index set.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2017年第5期950-961,共12页 Acta Mathematica Scientia
基金 安徽高校自然科学研究重点项目(KJ2015A253) 安徽省自然科学基金项目(1708085QA12)~~
关键词 BANACH空间 布混沌 转移半群 复扇形 Banach space Distributional chaos Translation semigroup Complex sector.
  • 相关文献

参考文献1

二级参考文献8

  • 1Grosse-Erdmann, K. G., Recent developments in hypercyclicity, Rev. Real Acad. Cienc. Serie A. Mat., 97(2003), 273-286.
  • 2Shapiro, J. H., Notes on Dynamics of linear operators, unpublished Lecture Notes, Available at http://www.math.msu.edu/~shapiro.
  • 3Schweizer, B. mad Smital, J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344(1994), 737-754.
  • 4Martfnez-Gim~nez, F., Oprocha, P. and Peris, A., Distributional chaos for backward shifts, J. Math. Anal. Appl., 351(2009), 607-615.
  • 5Hou, B. Z., Cui, P. and Cao, Y., Chaos for Cowen-Douglas operators, Proc. Amer. Math. Soc., 138(2010), 929-936.
  • 6Hou, B. Z., Tian, G. and Zhu, S., Approximation of chaotic operators, J. Operator Theory, forthcoming.
  • 7Li, Y., Tian, G., Wu, F. and Hou, B. Z., The existence of distributional chaos in nest algebras (in Chinese), J. Jilin Univ. (Science Edition), 47(2009), 948-950.
  • 8Davidson, K. R., Nest Algebras, Longman Scientific ~ Technical, Essex, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部