期刊文献+

On λ-Power Distributional n-Chaos

On λ-Power Distributional n-Chaos
原文传递
导出
摘要 For each real number λ∈ [0, 1], λ-power distributional chaos has been in- troduced and studied via Furstenberg families recently. The chaoticity gets stronger and stronger as A varies from 1 to 0, where 1-power distributional chaos is exactly the usual distributional chaos. As a generalization of distributional n-chaos,λ-power distributional n-chaos is defined similarly. Lots of classic results on distributional chaos can be improved to be the versions of λ-power distributional n-chaos accordingly. A practical method for distinguishing 0-power distributional n-chaos is given. A transitive system is constructed to be 0-power distributionally n-chaotic but without any distributionally (n + 1)-scrambled tuples. For each λ∈ [0, 1], ),-power distributional n-chaos can still appear in minimal systems with zero topological entropy.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第5期1119-1130,共12页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11071084,11201157,11471125) the Natural Science Foundation of Guangdong Province(No.S2013040013857)
关键词 Furstenberg family λ-power distributional n-chaos Minimal system Topological entropy 功率分布 分布混沌 最小系统 功率分流 分布式 拓扑熵 实数 类似
  • 相关文献

参考文献2

二级参考文献14

  • 1Liao,G .F.Anoteonachaoticmapwithtopologicalentropy0. NortheasternMathematicalJournal . 1986
  • 2Misurewicz,M,Sm姫tal,J.SmoothchaoticmapswithzerotopologicalentropyErgTh&DynSys,1988.
  • 3Zhou,Z .L,Liao,G .F,Wang,L .Y.Thepositivetopologicalentropynotequivalenttochaos———aclassofsubshifts. ScienceinChina,SerA . 1994
  • 4Erd s,P,Stone,A .H.Orbit closuredecompositionsandalmostperiodicproperties. Bulletin of the American Mathematical Society . 1945
  • 5Schweizer B,Smital J.Measures of chaos and a spectral decomposition of dynamical systems on the interval. Transactions of the American Mathematical Society . 1994
  • 6Sm姫tal,J.Chaoticfunctionswithzerotopologicalentropy,TransJournal of the American Mathematical Society,1986.
  • 7T. Y. Li,J. A. Yorke.Period three implies chaos. The American Mathematical Monthly . 1975
  • 8Schweizer,B.,Sklar,A. Probabilistic metric spaces . 1983
  • 9Xiong,J. C.A chaotic map with topological entropy 0. Acta Mathematica . 1986
  • 10Zhou,Z. L.Weakly almost periodic points and measure centre, Science in China, Ser. A . 1993

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部