期刊文献+

一类分形函数的Weyl-Marchaud分数阶导数的Hausdorff维数 被引量:1

The Hausdorff Dimension of Weyl-Marchaud Fractional Derivative of a Type of Fractal Functions
下载PDF
导出
摘要 首先介绍广义Weierstrass型函数的Weyl-Marchaud分数阶导数,得到了带随机相位的广义Weierstrass型函数的Weyl-Marchaud分数阶导数图像的Hausdorff维数,证明了该分形函数图像的Hausdorff维数与Weyl-Marchaud分数阶导数的阶之间的线性关系. This paper firstly introduces the Weyl-Marchaud fractional derivative of the generalized Weierstrass-type functions, then gets the Hausdorff dimension of the graphs of the fractional derivative of Weierstrass-type functions with arbitrary phases, proves the linear relationship between the order of the Weyl-Marchaud fractional derivative and Hausdorff dimension of the fractal functions.
出处 《数学年刊(A辑)》 CSCD 北大核心 2017年第3期257-264,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11471157)的资助
关键词 HAUSDORFF维数 广义Weierstrass型函数 Weyl-Marchaud分数阶导数 线性关系 Hausdorff dimension, Generalized Weierstrass-type functions,Weyl-Marchaud fractional derivative, Linear relationship
  • 相关文献

参考文献3

二级参考文献13

  • 1YaoKui,SuWeiyi,ZhouSongping.ON THE FRACTIONAL CALCULUS FUNCTIONS OF A FRACTAL FUNCTION[J].Applied Mathematics(A Journal of Chinese Universities),2002,17(4):377-381. 被引量:4
  • 2ZhouSongping,YaoKui,SuWeiyi.FRACTIONAL INTEGRALS OF THE WEIERSTRASS FUNCTIONS: THE EXACT BOX DIMENSION[J].Analysis in Theory and Applications,2004,20(4):332-341. 被引量:5
  • 3Falconer, J.,Fractal Geometry:Mathematical Foundations and Applications, New York: John Wiley Son, Inc., 1990.
  • 4Wen Zhiying, Mathematical Foundations of Fractal Geometry, Shanghai: ShanghaiScientific and Technological Education Publishing House, 2000.
  • 5Mandelbrot, B.B., The Fractal Geometry of Nature, New York: W.H.Freeman andCompany, 1983.
  • 6Bedford, T., On Weierstrass-like functions and random recurrent sets, Math. Proc.Cambridge Philos. Soc., 1989,106:325-342.
  • 7Berry, M.V., Lewis, Z.V., On the Weierstrass-Mandelbrot fractal function, Proc.Roy. Soc. London Ser.A, 1990,370:459-484.
  • 8Hu,T.Y., Lau, K.S., Fractal dimensions and singularities of the Weierstrass typefunctions, Trans. Amer. Math. Soc., 1993,335:649-655.
  • 9Sun,D.C., Wen, Z.Y., Dimension de Hausdorff des graphes de series trigonometriqueslaculaires, C.R.Acad. Sci. Paris Serie I, Math., 1990,310:135-140.
  • 10Miller,K.S., Ross,B., An Introduction to the Fractional Calculus and FractionalDifferentional Equations, New York: John Wiley Son, Inc, 1993.

共引文献12

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部