期刊文献+

一种基于稀疏表达的遥感影像时空融合方法 被引量:3

A Spatiotemporal Fusion Algorithm based on Sparse Representation for Remote Sensing Imagery
下载PDF
导出
摘要 由于受传感器硬件的限制,遥感影像存在空间分辨率和时间分辨率不可兼得的现象,因此,时空融合技术很重要。针对时空融合中不同传感器之间分辨率存在的较大差异问题,文中采用基于稀疏表达的超分辨率重建方法,构建中间分辨率影像,建立耦合字典模型,采用差分稀疏表达的方法进行时空融合。实验结果表明,该方法比传统稀疏表达方法在ERGAS指标上提高将近10%。 There exists a tradeoff between the spatial resolution and temporal resolution of the remote sensing images because of the limitation of the hardware,Therefore,the spatiotemporal fusion is important in image anlysis. To overcome the large difference of spatial resolution between different images,this paper proposed a novel spatiotemporal fusion algorithm based on superresolution reconstruction,used the single image superresolution reconstruction technique to construct the intermediate resolution images,and then these intermediate resolution images are applied to construct the coupled dictionary model. The high spatial resolution and high temporal resolution images are predicted based on these coupled dictionary model and sparse representation theory. Experimental results demonstrate that the proposed approach can raise the ERGAS index by 10%.
出处 《电子科技》 2017年第11期56-59,共4页 Electronic Science and Technology
基金 国家自然科学基金(41571362) 青海省地理空间信息技术与应用重点实验室基金(QDXS-2017-01)
关键词 时空融合 超分辨率重建 耦合字典模型 稀疏表达 spatiotemporal fusion superresolution reconstruction coupled ditionary model sparse representation
  • 相关文献

参考文献2

二级参考文献32

  • 1张良培,沈焕锋,张洪艳,袁强强.图像超分辨率重建[M].北京:科学出版社.2012.3-11.
  • 2Wolfe J. Guided search 2. 0. A revised model of visual search[J]. Psychonomic Bulletin & Review, 1994,1(2) :202 -238.
  • 3Steven Yantis. Sensation and perception [ M]. New York:Worth Publishers,2013.
  • 4Santella A, Agrawala M,Decarlo D,et al. Gaze - based inter-action for semi - automatic photo cropping [ C ]. In Proceed-ing SIGCHI Conference Human Factors Computer, 2006 :771 -780.
  • 5Bradley A,Stentiford F. Visual attention for region of interestcoding [ J]. J. Vis. Commun. Image Represent.,2003, 14(3):232-250.
  • 6Wang L,Xue J,Zheng N,et al. Automatic salient object ex-traction with contextual cue [ C ]. In ICCV,2011.
  • 7Navalpakkam V, Itti L. An integrated model of top - downand bottom - up attention for optimizing detection speed[C].In CVPR,2006.
  • 8Lang Congyan,Liu Guangcan,Yu Jian,et al. Saliency detec-tion by multitask sparsity pursuit [ J]. IEEE Transactions onImage Processing,2012,21(3) :1327 - 1338.
  • 9Shen Xiaohui,Wu Ying. A unified approach to salient objectdetection via low rank matrix recovery [ C]. 2012 IEEE Con-ference on Computer Vision and Pattern Recognition(CVPR) ,2012-.853,860.
  • 10Wei Y, Wen F,Zhu W,et al. Geodesic saliency using back-ground priors [ C]. In ECCV,2012 :29 -42.

共引文献9

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部