期刊文献+

基于融合卷积神经网络模型的手写数字识别 被引量:25

Handwritten Digits Recognition Based on Fused Convolutional Neural Network Model
下载PDF
导出
摘要 针对传统手写数字识别方法识别率较低的问题,提出一种融合卷积神经网络(F-CNN)模型。通过结合暹罗网络(SN)模型和二进制卷积神经网络(B-CNN)模型的高级特征,扩展网络高级层的尺寸,增强F-CNN模型的特征表达能力。在网络训练过程中,设计周期性数据打乱策略,提高F-CNN模型的收敛速度,更好地实现手写数字识别。在MNIST数据集上的实验结果表明,融合模型对于手写数字的识别准确率达到99.10%,识别性能优于SN模型和B-CNN模型。 Aiming at the problem that the recognition rate of traditional handwritten digits recognition method is low,this paper proposes a Fused Convolutional Neural Network( F-CNN) model. By combining the high-level features of the Siamese Network( SN) model and Binary Convolutional Neural Network( B-CNN) model,the F-CNN model expands the size of the high-level layers and enhances the features-expression ability of deep CNN network model. In the process of network training,a kind of periodic data shuffle strategy is designed to improve the convergence rate of the F-CNN model to realize better handwritten digits recognition. Experiments results on the public MNIST dataset show that the proposed F-CNN model has 99. 10% recognition rate for handwritten digits,which outperforms the SN model and the B-CNN model.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第11期187-192,共6页 Computer Engineering
基金 中央高校基本科研业务费专项资金(2042016gf0033) 武汉市应用基础研究计划项目(2016010101010025)
关键词 手写数字 融合模型 卷积神经网络 数据打乱策略 收敛速度 handwritten digits fused model Convolutional Neural Network (CNN) data scrambling strategy convergence rate
  • 相关文献

参考文献4

二级参考文献25

  • 1Curatelli M I.Handwritten Digit Recognition by Means of a Holographic Associative Memory[J].Expert System with Applica-tions,1998,15(3/4):399-403.
  • 2Malaviya A,Peters L.Fuzzy Feature Descripiton of Handwriting Pa-tterns[J].Pattern Recognition,1997,30(10):1591-1604.
  • 3Chen G Y,Bui T D,Krzyzal.Contour-based Handwritten Numeral Recognition Using Multi Wavelets and Neural Networks[J].Pattern Recognition,2003,36(7):1579-1604.
  • 4Kim Daijin,Bang Sungyang.A Handwritten Numeral Character Classification Using Tolerant Rough Set[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(9):923-937.
  • 5Zhang R,Ding X.Offline Handwritten Numeral Recognition Using Orthogonal Gaussian Mixture Model[C].IEEE International Conference on Image Processing,2001,1(1):1126-1129.
  • 6Hu J,Yan Y.Structural Primitive Extraction and Coding for Handwritten Numeral Recognition[J].Pattern Recognition,1998,31(5).
  • 7Wang J,Yan H.A Hybrid Method for Unconstrained Handwritten Numeral Recognition by Combining Structural and Neural "Gas" Classifiers[J].Pattern Recognition Letters,2002,23(6/7):625-635.
  • 8Datta A,Parui S K.A Robust Parallel Thinning Algorithm for Binary Images[J].Pattern Recognition,1994,27(9):1181-1192.
  • 9NIST Handprinted Forms and Characters Database[Z].《http://www》.nist.gov/srd/nistsd19.htm.
  • 10沈清 胡德文 时春.神经网络应用技术[M].长沙:国防科技大学出版社,1995.372-377.

共引文献37

同被引文献197

引证文献25

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部