期刊文献+

指数Diophantine方程(143n)~x+(24n)~y=(145n)~z

The Exponential Diophantine Equation (143n)~x+(24n)~y=(145n)~z
原文传递
导出
摘要 设(a,b,c)是一组满足a^2+b^2=c^2,gcd(a,b)=1,2|b的本原商高数,运用初等数论方法讨论方程(an)~x+(bn)~y=(cn)~z正整数解(x,y,z,n),证明了:当(a,b,c)=(143,24,145)时,方程仅有正整数解(x,y,z,n)=(2,2,2,m),其中m是任意正整数,上述结果说明此时Jesmanowicz猜想成立. Let (a, b, c) be a primitive Pythagorean triple such that a^2+b^2 = c^2, gcd (a, b) = 1 and21b. In this paper, using some elementary number theory methods, the positive integer solutions (x, y, z, n) of the equation (an)x + (a, b, c) = (143, 24, 145), then the equation has (2, 2, 2, m), where m is an arbitrary positive conjecture for this case. bny = (cn)z are discussed. We prove that if only the positive integer solutions (x, y, z, n) = integer. The above result verifies Jesanowicz conjecture for this case.
作者 刘宝利
出处 《数学的实践与认识》 北大核心 2017年第20期178-182,共5页 Mathematics in Practice and Theory
关键词 指数DIOPHANTINE方程 本原商高数 JESMANOWICZ猜想 exponential Diophantine equation primitive pythagorean triple Jesanowiczconjecture
  • 相关文献

参考文献3

二级参考文献19

  • 1华罗庚.数论导引[M].北京:科学出版社,1979..
  • 2Sierpifiski W. On the equation 3 + 49 = 5z [J]. Wiadom. Mat., 1955/1956,1:194-195.
  • 3Jeemanowicz L. Several remarks on Pythagorean numbers [J]. Wiadom. Mat., 1955/1956,1:196-202.
  • 4Deng Moujie, Cohen G L. On the conjecture of Jesmanowicz concerning Pythagorean triples [J]. Bull. Aust. Math. Soc., 1998,57:515-524.
  • 5Le Maohua. A note on Jegmanowicz conjecture concerning Pythagorean triples[J]. Bull. Aust. Math. Soc., 1999,59:477-480.
  • 6Yang Zhijuan, Tang Min. On the Diophantine equation (8n)X(15n) = (17n)z [J]. Bulletin of the Australian Mathematical Society, 2012,86(2}:348.-352.
  • 7陆文端.关于商高数组4n21,4n14n2+1[J].四川大学学报:自然科学版,1959,2:39-42.
  • 8Jeganowicz L. Several remarks on Pythagorean numbers[J]. Wiadom.Math, 1955, 1(2): 196-202.
  • 9Miyazaki T. On the conjecture of Jeganowicz concerning Pythagorean triples[J]. Bull Aust Math Soc, 2009, 80(3): 413-422.
  • 10Miyazaki T. The shuffle variant of Jeganowicz concerning Pythagorean triples[J]. J Aust Math Soc. 2011, 90(3): 355-370.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部