期刊文献+

高In组分InGaNAs/GaAs量子阱的生长及发光特性

Growth and Photoluminescence Characteristics of In Ga NAs/Ga As QW with High In Composition
下载PDF
导出
摘要 采用分子束外延技术(MBE)在Ga As衬底上外延生长高In组分(>40%)In Ga NAs/Ga As量子阱材料,工作波长覆盖1.3~1.55μm光纤通信波段。利用室温光致发光(PL)光谱研究了N原子并入的生长机制和In Ga NAs/Ga As量子阱的生长特性。结果表明:N组分增加会引入大量非辐射复合中心;随着生长温度从480℃升高到580℃,N摩尔分数从2%迅速下降到0.2%;N并入组分几乎不受In组分和As压的影响,黏附系数接近1;生长温度在410℃、Ⅴ/Ⅲ束流比在25左右时,In_(0.4)Ga_(0.6)N_(0.01)As_(0.99)/Ga As量子阱PL发光强度最大,缺陷和位错最少;高生长速率可以获得较短的表面迁移长度和较好的晶体质量。 In Ga NAs/GaAs quantum-well( QW) with high In composition( 40%) which covered the optical fiber communication wavelength range of 1. 3-1. 55 μm was grown on GaAs substrate by molecular beam epitaxy( MBE). The characteristics of N atom incorporation and growth properties for In Ga NAs/GaAs QW were studied by photo luminescence( PL) spectra at room temperature. The results show that the increasing of N composition can result in a large number of non-radiative recombination centers. The mole fraction of N decreases sharply from 2% to 0. 2% with the growth temperature increasing from 480 ℃ to 580 ℃. The change of In composition and As pressure cannot influence the incorporation of N atoms and the adhesion coefficient of N is about 1. The PL intensity at1. 3 μm for In Ga NAs/GaAs QW is strongest at the growth temperature of 410 ℃ and Ⅴ/Ⅲ ratio of- 25. Higher growth rate can obtain shorter surface migration length and improve the crystal quality.
出处 《发光学报》 EI CAS CSCD 北大核心 2017年第11期1510-1515,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(61274137 11304274) 云南省教育厅基金(2014Z043)资助项目~~
关键词 InGaNAs 量子阱 分子束外延 光致发光光谱 InGaNAs quantum well molecular beam epitaxy photoluminescence
  • 相关文献

参考文献4

二级参考文献41

  • 1曹长庆,曾晓东,冯喆珺,霍雷,商继敏,朱东济,安毓英.大功率半导体激光器远场光分布特性[J].光子学报,2011,40(S1):68-72. 被引量:3
  • 2任红文,刘士文,徐现刚,黄柏标,蒋民华.MOCVD生长GaAs/AlGaAs掺杂量子异质结构工艺评价[J].人工晶体学报,1993,22(2):132-135. 被引量:1
  • 3王素平,凌健博,刘立伟,左保军.一种应用于太阳仿真器的照明系统设计[J].光电工程,2006,33(9):32-34. 被引量:16
  • 4王元,张林华.一种新型全光谱太阳模拟器设计[J].太阳能学报,2006,27(11):1132-1136. 被引量:38
  • 5张大伟,孙浩杰.氧离子束辅助沉积氧化铪薄膜光学属性的研究[J].应用激光,2006,26(5):333-335. 被引量:5
  • 6JENKINS P, SCHEIMAN D, SNYDER D. Design and performance of a triple source air mass zero solar simulator [ C ]. NASA/CP. Cleveland:NASA Glenn Research Center,USA,2005,213431:134-138.
  • 7WARNER J H, WALTERS R J, MESSENGER S R,et al.. Measurement and characterization of triple junction solar cells using a close matched multi-zone solar simulator[J]. SPIE,2004,5520:45-55.
  • 8Hongxiu Zhang,Feng Ren,Mengqing Hong,Xiangheng Xiao,Guangxu Cai,Changzhong Jiang.Structure and Growth Mechanism of V/Ag Multilayers with Different Periodic Thickness Fabricated by Magnetron Sputtering Deposition[J]. Journal of Materials Science & Technology . 2013
  • 9Yousef Seyed Jalili,Paul N Stavrinou,Gareth Parry.GaAs-based III–N<SUB> y </SUB>–V<SUB>1? y </SUB> active regions based on short-period super-lattice structures[J]. Semiconductor Science and Technology . 2008 (12)
  • 10Daniel C. Law,R.R. King,H. Yoon,M.J. Archer,A. Boca,C.M. Fetzer,S. Mesropian,T. Isshiki,M. Haddad,K.M. Edmondson,D. Bhusari,J. Yen,R.A. Sherif,H.A. Atwater,N.H. Karam.Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems[J]. Solar Energy Materials and Solar Cells . 2008 (8)

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部