期刊文献+

当量比和温度对丙烯层流预混火焰PAHs生成的影响

The Influence of Equivalent Ratio and Temperature on PAHs Formation in Premixed Propene Flame
下载PDF
导出
摘要 利用平面激光诱导荧光(PLIF)技术和化学反应动力学模拟研究了温度和当量比对C_3H_6/O_2/Ar层流预混火焰中PAHs生成的影响。实验结果表明:随着丙烯层流预混火焰高度增加,荧光强度逐渐增大,即PAHs的浓度随着火焰高度的增大逐渐增大;当量比增加,PAHs的浓度增大,温度上升,PAHs的浓度下降。利用Chemkin Pro软件结合KAUST2机理,构建一维层流预混火焰模型,计算了小基团浓度,发现当量比增加,苯环和形成苯环的重要物质C_2H_2增加,而温度上升则使其降低,趋势与PAHs浓度变化相同,说明当量比和温度的变化会影响C_2H_2浓度,从而影响PAHs的生成。 Planar laser induced fluorescence(PLIF)method and chemical kinetics simulation were used to detect the polycyclic aromatic hydrocarbons(PAHs) in laminar premixed C3H6/O2/Ar flame to study the influence of equivalent ratio and temperature on PAHs formation. The experiment result shows: The PAHs fluorescence intensity increased with the increase of height above burner in laminar premixed C3 H6 flame.And the PAHs fluorescence intensity increased with the addition of equivalent ratio, decreased with the addition of temperature. The Chemkin software and KAUST2 soot formation mechanism were combined to build the unidimensional laminar premixed flame model to calculate the concentration of little perssads. It shows that C2H2 increased with the addition of equivalent ratio and decreased with the addition of temperature. It shows that equivalent ratio and temperature influence the concentration of C2H2, and then influence the formation of PAHs.
出处 《小型内燃机与车辆技术》 2017年第5期1-10,共10页 Small Internal Combustion Engine and Vehicle Technique
基金 国家重点基础研究发展计划项目(973计划)(2006CB200303 2006CB2003056) 国家自然科学基金(91441129)
关键词 平面激光诱导荧光 荧光光谱 丙烯 多环芳香烃 层流预混火焰 Planar laser induced fluorescence(PLIF) Fluorescence spectra Propene Polycyclic aromatichydrocarbons (PAHs) Laminar premixed flame
  • 相关文献

参考文献1

二级参考文献22

  • 1Luch A. Polycyclic aromatic, hydrocarbon-induced carcinogenesis-an introduction[M]//The carcinogenic effects of polycyclic aromatic hydrocarbons. London: Imperial College Press, 2005: 1-18.
  • 2Minutolo P, D'Anna A, D'Alessio A. On detection of nanoparticles below the sooting threshold [J]. Combustion&Flame, 2008, 152(1): 287-292.
  • 3Silverman D T, Samanic C M, Lubin J H, et al. The diesel exhaust in miners study: a nested case-control study of lung cancer and diesel exhaust[J]. Journal of the National Cancer Institute, 2012, 104(11): 855-868.
  • 4Marr L C, Kirchstetter T W, Harley R A, et al. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions [J]. Environmental Science & Technology, 1999, 33(18): 3091-3099.
  • 5Wang H. Formation of nascent soot and other condensed- phase materials in flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 41-67.
  • 6Johnson K S, Zuberi B, Molina L T, et al. Processing ofsoot in an urban environment: case study from the Mexico City Metropolitan Area[J]. Atmospheric Chemistry and Physics, 2005, 5: 3033-3043.
  • 7Jung H, Guo B, Anastasio C, et al. Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid[J]. Atmospheric Environment, 2006, 40(6): 1043-1052.
  • 8Maricq M M. Chemical characterization of particulate emissions from diesel engines: A review[J]. Journal of Aerosol Science, 2007, 38(11): 1079-1118.
  • 9Vander Wal R L. Soot precursor material: Visualization via simultaneous LIF-LII and characterization via TEM [J]. Symposium(International) on Combustion, i996, 26(2): 2269-2275.
  • 10Frenklach M, Clary D W, Gardiner W C Jr, et al. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene[J] Symposium(International) on Combustion, 1985, 20(1): 887-901.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部