摘要
目的:探讨差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型在盐城肺结核发病率预测中的应用。方法:利用盐城市2011年1月—2016年12月的肺结核月发病率建立乘积季节ARIMA模型,并评价模型的预测效能。结果:盐城市肺结核预测模型为ARIMA(1,1,0)(2,1,0)12,该模型的参数估计具有统计学意义,拟合优度检验统计量最小标准化贝叶斯信息准则(Normalized BIC)=-0.144,残差序列检验统计量Ljung-Box=0.247(P>0.05),残差为白噪声,模型能够拟合出肺结核的发病趋势。结论:ARIMA模型可以应用于盐城市肺结核发病趋势的预测,对肺结核的预防控制有积极的意义。
Objective: To explore the feasibility of multiple seasonal autoregressive integrated moving average(ARIMA) model to forecast the epidemic trends of pulmonary tuberculosis incidence. Methods: The ARIMA model was established based on monthly incidence rates of pulmonary tuberculosis in Yancheng City, from Jan 2011 to Dec 2016,and evaluate the model predictive performance. Results: Through the test of parameters and goodness of fit as well as white-noise residuals, we finalized the model ARIMA(1,1,0)(2,1,0),2, of which Normalized BIC=-0.144, Ljung-Box=0.247(P〉0.05), the model can fit the incidence trend over the period. Conclusions: The model can predict the incidence trend of pulmonary tuberculosis, and it plays a positive role in preventing and controlling pulmonary tuberculosis.
出处
《南通大学学报(医学版)》
2017年第4期331-334,共4页
Journal of Nantong University(Medical sciences)
基金
江苏省卫计委青年基金资助项目(Q201513)
盐城市医学科技计划发展项目(YK2015034)
关键词
差分自回归移动平均模型
肺结核
发病率
预测
盐城
autoregressive integrated moving average model
pulmonary tuberculosis
incidence
prediction
Yancheng