期刊文献+

Biogeochemistry of methanogenesis with a specific emphasis on the mineral-facilitating effects

Biogeochemistry of methanogenesis with a specific emphasis on the mineral-facilitating effects
下载PDF
导出
摘要 The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H_2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process. The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process.
出处 《Acta Geochimica》 EI CAS CSCD 2017年第3期379-384,共6页 地球化学学报(英文)
基金 partly supported by the National Natural Science Foundation of China(41630857) the National Basic Research Program of China(2016YFD0200306)
关键词 生物地球化学循环 产甲烷过程 矿物 甲烷微生物 缺氧环境 电子转移 电子传递 化学介质 Syntrophy Methanogenesis Direct interspecies electron transfer Magnetite Wetland Paddy fields
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部