期刊文献+

KCa3.1通道参与调控星形胶质细胞糖氧剥夺诱导的内质网应激

KCa3.1 Channel was involved in the Regulation of Oxygen and Glucose Deprivation-induced Endoplasmic Reticulum Stress in Astrocytes
原文传递
导出
摘要 目的:研究KCa3.1在糖氧剥夺诱导的原代星形胶质细胞内质网应激(ERS)中的调控作用。方法:通过构建原代星形胶质细胞糖氧剥夺(OGD)模型,应用cck-8法、免疫荧光技术、western blotting等分子生物学技术研究KCa3.1在OGD引起的原代星形胶质细胞内质网应激中的作用。结果:OGD 4 h处理后星形胶质细胞内KCa3.1的表达明显上调。OGD处理后星形胶质细胞的细胞活力显著性降低,且具有时间依赖性。给予KCa3.1通道抑制剂TRAM-34可提高OGD 4 h处理后星形胶质细胞的细胞活力,并具有剂量依赖性。OGD处理0.5 h、1 h、3 h、4 h、6 h后,原代星形胶质细胞内ERS信号通路被激活,GRP78、p-eIF-2α的表达显著性上调。给予KCa3.1通道抑制剂TRAM-34后,OGD引起的星形胶质细胞内GRP78、p-eIF-2α的上调幅度显著性降低。结论:KCa3.1通道参与了星形胶质细胞内OGD引起的内质网应激通路的激活。 Objective: To evaluate the regulation of KCa3.1 in oxygen and glucose deprivation-induced endoplasmic reticulum stress in primary astrocytes. Methods: The model of oxygen and glucose deprivation in primary astrocytes were constructed to explore the role of Ka3.1 channel on OGD-induced endoplasmic reticulum stress by using cell biology and molecular biology techniques including cck-8, imrnunofluorescence technique and western blotting. Results: Expression of KCa3. I protein in astrocytes subjected to OGD 4 h was significantly up-regulated. Cell viability of astrocytes subjected to OGD was significantly time-dependent lower. KCa3.1 channel inhibitor, TRAM-34, could improve the cell viability of astrocytes treated with OGD 4 h, which was dose-dependent. ERS signaling pathway was activated in primary astrocytes at 0.5 h, 1 h, 3 h, 4 h, 6 h after OGD. The expression of GRP78 and p-elF-2α protein was significantly up-regulated. The up-regulation of GRP78 and p-elF-2α in the TRAM-34 group after OGD treatment was significantly inhibited. Conclusions: KCa3.1 channel is involved in the activation of endoplasmic reticulum stress pathway induced by OGD in primary astrocytes.
出处 《现代生物医学进展》 CAS 2017年第30期5801-5806,共6页 Progress in Modern Biomedicine
基金 国家自然科学基金项目(81373351) 上海市自然科学基金项目(16ZR1418700)
关键词 KCa3.1 OGD 星形胶质细胞 内质网应激 KCa3.1 OGD Astrocytes Endoplasmic reticulum stress
  • 相关文献

参考文献1

二级参考文献17

  • 1Black J, Baharestani MM, Cuddigan J, et al. National Pressure Ulcer Advisory Panel's updated pressure ulcer staging system. Adv Skin Wound Care, 2007, 20(5) : 269-274.
  • 2Hatoko M, Tanaka A, Kuwahara M, et al. Difference of molecu- lar response to ischemia-reperfusion of rat skeletal muscle as a function of ischemie time: study of the expression of p53, p21 (WAF-1), Bax protein, and apoptosis. Ann Plast Surg, 2002, 48(1) : 68-74.
  • 3Siu PM, Tam EW, Teng BT, et al. Muscle apoptosis is induced in pressure-induced deep tissue injury. J Appl Physiol, 2009, 107(4) :1266-1275.
  • 4Stekelenburg A, Gawlitta D, Bader DE, et al. Deep tissue inju- ry: how deep is our understanding?. Arch Phys Med Rehabil, 2008,89(7) :1410-1413.
  • 5Basha B, Samuel SM, Triggle CR, et al. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticu- lum stress? Exp Diabetes Res, 2012,2012:481840.
  • 6National Pressure Ulcer Advisory Panel (NPUAP). Educational and Clinical Resources: NPUAP Pressure Ulcer Stages/Categories [EB/OL]. 2007 [2013-01-23 ]. http://www, npuap, org/re- sourees/educational-and-elinical-resources/npuap-pressure-ulcer- stagescategories/.
  • 7Liu S, Kelvin D J, Leon A J, et al. Induction of Fas mediated caspase-8 independent apoptosis in immune cells by Armigeres subalbatus saliva. PLoS One, 2012,7(7) :e41145.
  • 8Gefen A. Risk factors for a pressure-related deep tissue injury: a theoretical model. Med Biol Eng Comput, 2007,45 ( 6 ) : 563- 573.
  • 9Ankrom MA, Bennett RG, Sprigle S, et al. Pressure-related deep tissue injury under intact skin and the current pressure ulcer stag- ing systems. Adv Skin Wound Care, 2005,18( 1 ) :35-42.
  • 10Bouten CV, Breuls RG, Peeters EA, et al. In vitro models to study compressive strain-induced muscle cell damage. Biorheology, 2003,40( 1/2/3 ) : 383-388.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部