期刊文献+

基于特征距离的多类SVM分类方法研究 被引量:3

Research on Multi-class SVM Classification Method Based on Jeffries-Matusita Distance
下载PDF
导出
摘要 提出了一种基于特征分离性测度的面向对象分类方法。首先利用区域增长分割影像获得影像对象,并计算光谱、纹理、形状等多种分类特征,然后在构建多类SVM分类器过程中,对于任意两个分类类别对,利用Jeffries-Matusita距离选择最合适的特征。实验证明,相比于原始方法,基于Jeffries-Matusita距离的多类分类器能够有效减少建筑物、道路等复杂地物的误分现象,提高分类的总体精度和Kappa系数。 This paper presented an object-oriented classification method based on separability measurement. Image objects were obtained by region growing segmentation, and many different kinds of characteristics were calculated for the image objects, such as spectral, texture and shape at first. And then, a new multi-class SVM classifier was constructed in the one-against-one way, and the most suitable characteristic set were selected for every two-class-pair by JeffriesMatusita distance. The experiment results show that the new multi-class SVM classifier based on Jeffries-Matusita distance can reduce wrong classification for complicated feature, such as building and road, and improve total accuracy and Kappa coefficient significantly.
出处 《地理空间信息》 2017年第11期84-87,共4页 Geospatial Information
基金 公益性行业科研专项资助项目(201511009-01)
关键词 面向对象影像分析 SVM Jeffries-Matusita距离 object-oriented image analysis SVM Jeffries-Matusita distance
  • 相关文献

参考文献1

二级参考文献11

  • 1Boardman J, Kruse F. Automated Spectral Analysis: A Geological Example Using AVIRIS Data [ C]. The 10th Thematic Conference on Geologic Remote Sens- ing, North Grapevine Mountains, Nevada, 1994.
  • 2Xu Bing, Gong Peng. Land-use/Land-cover Classi- fication with Multispectral and Hyperspectral EO-1 Data[J]. Photogrammetric Engineering and Remote Sensing, 2007,73(8): 955-965.
  • 3Chang C, Lin C. LIBSVM: A Library for Support Vector Machines [OL]. http://csie, ntu. edu. tw/cj- lin/libsvm, 2001.
  • 4Kressel U. Pairwise Classification and Support Vec- tor Machines [M]. Advances in Kernel Methods-- Support Vector Learning. Cambridge: MIT Press, 1999:255-268.
  • 5Platt J, Cristianini N, Shawe-Taylor J. Large Mar- gin DAGs for Multiclass Classification [ J]. Ad- vances in Neural Information Processing Systems, 2000,12(3) : 547-553.
  • 6Azimi-Sadjadi M R, Zekavat S A. Cloud Classifica- tion Using Support Vector Machines[C]. The Geo- science and Remote Sensing Symposium (IGARSS 2000), Honolulu, HI, 2000.
  • 7Hsu C, Lin C. A Comparison of Methods for Mul- ticlass Support Vector Machines[J]. IEEE Transac-tions on Neural Networks, 2002,13(2): 415-425.
  • 8谭琨,杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128. 被引量:108
  • 9张睿,马建文.一种SVM-RFE高光谱数据特征选择算法[J].武汉大学学报(信息科学版),2009,34(7):834-837. 被引量:16
  • 10沈照庆,舒宁,陶建斌.一种基于NPA的加权“1 V m”SVM高光谱影像分类算法[J].武汉大学学报(信息科学版),2009,34(12):1444-1447. 被引量:3

共引文献6

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部