期刊文献+

基于RBF神经网络的光伏动态重组系统 被引量:1

Reconfiguration approach based on RBF neural network for PV arrays system
下载PDF
导出
摘要 光伏系统的模块重组对于改善系统的P-V特性有非常重要的作用。提出了一种在部分阴影遮蔽情况下基于人工神经网络算法的光伏模块重组方案。这个方案中,光伏模块分为固定部分和自由部分,并通过开关矩阵来连接。然后测量的每个自由模块以及每行固定模块的短路电流值,测量值通过人工神经网络算法得到的结果决定开关矩阵的连接方式。仿真实验显示所提出的方案的参数测量实时简易、重组策略高效,能有效地改善部分阴影状态下的光伏阵列的功率输出。最重要是所提出的控制策略能应用于较大规模光伏系统结构重组。 The reconfiguration process of PV system plays an important role in improving P-V characteristics of the system. In this paper, a new PV reconfiguration method based on artificial neural network algorithm was proposed to against the partial shading effect. In the scheme, PV module was divided into fixed and adaptive part, which were connected by switch matrix. And then, the short-circuit current of each module and each line of the fixed module were detected to determine the connection of switch matrix by using artificial neural network algorithm. It has been verified with simulation experimental results that the proposed approach have an efficient reconfiguration strategy,real-time applicability, and easy measurable parameters,thus improve the power output of the whole photovoltaic.And the most important is that the proposed control strategy can be applied to the reconfiguration of large scale photovoltaic system.
出处 《电源技术》 CAS CSCD 北大核心 2017年第11期1571-1574,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(51267001)
关键词 阴影遮蔽 实时光伏重组 RBF神经网络 重构算法 partial shading real-time PV reconfiguration RBF neural network reconfiguration algorithm
  • 相关文献

参考文献2

二级参考文献20

  • 1俞秋阳,朱斌,郭伟.基于RBF神经网络的短期负荷预测模型设计[J].继电器,2004,32(17):34-37. 被引量:10
  • 2Cuiyan,C R.A Research of Hot Spot on PV Array[A].Proceedings of the 15th International Photovoltaic Science &Engineering Conference(PVSEC-15)[C].2005,1:446-447.
  • 3Dzung Nguyen,Brad Lehman.An Adaptive Solar Photovoltaic Array Using Model-based Reconfiguration Algorithm[J].IEEE Trans.on Industrial Electronics,2008,55(7):2644-2654.
  • 4G Velasco,J J Negroni,F Guinjoan,et al.Irradiance E-qualization Method for Output Power Optimization in Plant Oriented Grid-connected PV Generators[A].Power Electronics and Applications European Conference[C].2005:1-10.
  • 5Patel H,Agarwal V.Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions[J].IEEE Trans.on Industrial Electronics,2008,55(4):1689-1698.
  • 6云志刚,杨宏,李文滋.光伏组件中电池遮挡与Ⅰ-Ⅴ曲线特性变化关系[A].第八届全国光伏会议暨中日光伏论坛论文集[C].深圳,2004:670-673.
  • 7Ranaweera D K, Hubele N F. Application of radial basis function neuralnetwork model for short-term load forecasting[J]. IEE Proceedings on Generation, Transmission and Distribution, 1995, 142(1): 45-50.
  • 8席云华,张尧.RBF神经网络在短期负荷预测中的应用[C].//中国高等学校电力系统及其自动化专业第二十二届学术年会,2006.
  • 9Karayiannis N B, Balasubramanian M, Malki H A. Evaluation of cosine radial basis function neural networks on electric power load forecasting[C].//Neural Networks, 2003. Proceedings of the International Joint Conference on, 2003(3): 2100-2105.
  • 10JIA Zheng-yuan, TIAN Li. Short-term power load foreasting based on fuzz-j-RBF neutra| network[C], ff Risk Management & Englneer{ng Management, 2008. ICRMEM '08 International Conference on: 349 - 352.

共引文献74

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部