期刊文献+

基于稀疏核增量超限学习机的机载设备在线状态预测 被引量:6

Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine
下载PDF
导出
摘要 为实现对机载设备工作状态的在线状态预测,提出了一种稀疏核增量超限学习机(ELM)算法。针对核在线学习中核矩阵膨胀问题,基于瞬时信息测量提出了一个融合构造与修剪策略的两步稀疏化方法。通过在构造阶段最小化字典冗余,在修剪阶段最大化字典元素的瞬时条件自信息量,选择一个具有固定记忆规模的稀疏字典。针对基于核的增量超限学习机核权重更新问题,提出改进的减样学习算法,其可以实现字典中任一个核函数删除后剩余核函数Gram矩阵的逆矩阵的前向递推更新。通过对某型飞机发动机的状态预测,在预测数据长度等于20的条件下,本文提出的算法将预测的整体平均误差率下降到2.18%,相比于3种流形的核超限学习机在线算法,预测精度分别提升了0.72%、0.14%和0.13%。 In order to achieve the online condition prediction for avionic devices, a sparse kernel incre- mental extreme learning machine (ELM) algorithm is presented. For the problem of Gram matrix expansion in kernel online learning algorithms, a novel sparsification rule is presented by measuring the instantaneous learn- able information contained on a data sample for dictionary selection. The proposed sparsification method com- bines the constructive strategy and the pruning strategy in two stages. By minimizing the redundancy of diction- ary in the constructive phase and maximizing the instantaneous conditional self-information of dictionary atoms in the pruning phase, a compact dictionary with predefined size can be selected adaptively. For the kernel weight updating of kernel based incremental ELM, an improved deeremental learning algorithm is proposed by using matrix elementary transformation and block matrix inversion formula, which effectively moderate the computational complexity at each iteration. In proposed algorithm, the inverse matrix of Gram matrix of the oth- er samples can be directly updated after one sample is deleted from previous dictionary. The experimental results of the aero-engine condition prediction show that the proposed method can make the whole average error rate reduce to 2.18% when the prediction step is equal to 20. Compared with three well-known kernel ELM online learning algorithms, the prediction accuracy is improved by 0.72%, 0.14% and 0.13% respectively.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第10期2089-2098,共10页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61571454)~~
关键词 状态预测 核在线学习 稀疏测量 超限学习机(ELM) 有效集 condition prediction kernel online learning sparsity measure extreme learning machine(ELM) active set
  • 相关文献

参考文献2

二级参考文献31

  • 1Khaleghi B,Khamis A,Karray F O,et al.Multisensor data fusion:A review of the state-of-the-art[J].Information Fusion,2013,14(1):28-44.
  • 2Pravia M A,Babko-Malaya O,Schneider M K,et al.Lessons learned in the creation of a data set for hard/soft information fusion[C]∥12th International Conference on Information Fusion.Piscataway,NJ:IEEE Press,2009:2114-2121.
  • 3Gross G A,Nagi R,Sambhoos K,et al.Towards hard+soft data fusion:Processing architecture and implementation for the joint fusion and analysis of hard and soft intelligence data[C]∥15th International Conference on Information Fusion.Piscataway,NJ:IEEE Press,2012:955-962.
  • 4Hossain M A,Atrey P K,El Saddik A.Learning multisensor confidence using a reward-and-punishment mechanism[J].IEEE Transactions on Instrumentation and Measurement,2009,58(5):1525-1534.
  • 5David R P,Sampaio-Neto R,Medina C A.A linear adaptive algorithm for data fusion in distributed detection systems[C]∥11th International Symposium on Wireless Communications Systems.Piscataway,NJ:IEEE Press,2014:370-374.
  • 6Meng Z,Shi Z.Extended rough set-based attribute reduction in inconsistent incomplete decision systems[J].Information Sciences,2012,204(10):44-69.
  • 7Lu Z,Qin Z,Zhang Y,et al.A fast feature selection approach based on rough set boundary regions[J].Pattern Recognition Letters,2014,36(1):81-88.
  • 8Zheng K,Hu J,Zhan Z,et al.An enhancement for heuristic attribute reduction algorithm in rough set[J].Expert Systems with Applications,2014,41(15):6748-6754.
  • 9Shu W,Shen H.Incremental feature selection based on rough set in dynamic incomplete data[J].Pattern Recognition,2014,47(12):3890-3906.
  • 10Wang J S,Song J D,Gao J.Rough set-probabilistic neural networks fault diagnosis method of polymerization kettle equipment based on shuffled frog leaping algorithm[J].Information,2015,6(1):49-68.

共引文献52

同被引文献23

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部