期刊文献+

超高层建筑横风向气动刚度研究 被引量:1

ANALYSIS ON CROSSWIND AERODYNAMIC STIFFNESS OF SUPER TALL BUILDINGS
原文传递
导出
摘要 为了研究超高层建筑横风向气动刚度,进行了多自由度气弹模型试验,以直接测量模型在不同风速下的振动频率,用该频率相对于自振频率的改变量作为气动刚度的评估指标。分析了结构阻尼比、风场粗糙度、模型密度、折算风速、高宽比、涡振位移等因素对气动刚度的影响。结果表明:在共振临界风速附近,气动刚度造成风振频率改变量可达自振频率的10%;频率改变量随折算风速呈"V"字形变化,在折算风速小于8时,频率改变量通常为正,在共振临界风速附近频率改变量最大,折算风速大于12时,频率改变量保持稳定且略小于结构自振频率。由于涡振位移和气动刚度的相互作用,结构阻尼比越小、风场紊流度越小、模型高宽比越大、密度越小则频率改变量随风速变化的"V"字形越尖锐。最后提出了名义折算风速和实际折算风速的概念,并建立了气动刚度的简化估算模型。 To study the aerodynamic stiffness of super high-rise buildings in the process of vortex-induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity (Vr), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When Vr is less than 8, the drift magnitude of the frequency is typically positive. When Vr is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When Vr is larger than 12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Due to the self-limiting and nonlinear characteristics of the VIV mechanism and the relationship between the STD of VIV displacement response and the aerodynamic stiffness, the aerodynamic stiffness and drift magnitude of the system frequency are highly sensitive to the aspect ratio, mass density, inherent damping of structure, as well as the roughness of wind field. Finally, the concept of nominal reduced wind speed and real reduced wind speed were proposed. An empirical formula to assess aerodynamic stiffness was established.
出处 《工程力学》 EI CSCD 北大核心 2017年第11期135-144,共10页 Engineering Mechanics
基金 国家自然科学基金项目(51178359 51478369) 河南省科技厅科技攻关项目(132102210252)
关键词 高层建筑 多自由度气弹模型 涡激振动 气动刚度 风洞试验 super high-rise building MDOF aero-elastic model vortex-induced vibration aerodynamic stiffness wind tunnel tests
  • 相关文献

参考文献7

二级参考文献65

  • 1胡建华,赵跃宇,刘慕广,陈政清.串列双索气弹模型的风洞试验研究[J].动力学与控制学报,2006,4(2):179-186. 被引量:9
  • 2文永奎,孙利民.大跨度斜拉桥钢塔施工阶段振动控制[J].同济大学学报(自然科学版),2006,34(9):1152-1158. 被引量:8
  • 3Yang J N, Agrawal A K, Samali B, Wu J C. Benchmark problem for response control of wind-excited tall buildings [J]. Journal of Engineering Mechanics, 2004, 130(4): 437--466.
  • 4Cao H, Reinhorn A M, Song T T. Design of an active mass damper for a tall TV tower in Nanjing, China [J]. Engineering Structures, 1998, 20(3): 134- 143.
  • 5Yamazaki S, Nagata N, Abim H. Tuned active dampers installed in the Minato Mirai (MM) 21 Landmark Tower in Yokohama [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 43(1-3): 1937-1948.
  • 6Warburton G B, Ayorinde E O. Optimum absorber parameters for simple systems [J]. Earthquake Engineering and Structural Dynamics, 1982, 8: 197- 217.
  • 7Schemmann A G, Smith H A. Vibration control of cable-stayed bridges - part 1: modeling issues [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(8): 811 -824.
  • 8Dyke S J, Caicedo J M, Turan G, Bergman L A, Hague S. Phase I benchmark control problem for seismic response of cable-stayed bridges [J]. Journal of Structural Engineering, 2003, 129(7): 857--872.
  • 9Jones N P, Scanlan R H. Theory and full-bridge modeling of wind response of cable-supported bridge [J]. Journal of Bridge Engineering, 2001, 6:365 -- 375.
  • 10Jabbari F, Schmitenforf W E, Yang J N. Hx control for seismic-excited buildings with accelerations feedback [J] Journal of Engineering Mechanics, 1995, 121(9): 994 -- 1002.

共引文献57

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部