期刊文献+

白边大叶蝉线粒体基因组测序与分析 被引量:4

Sequencing and analysis of the mitochondrial genome of Kolla paulula (Walker) (Hemiptera: Cicadellidae)
下载PDF
导出
摘要 采用引物步移法测得白边大叶蝉Kolla paulula(Walker)线粒体基因组90%左右的序列,并分析了该叶蝉的线粒体基因组特征。基于23个物种(半翅目)的蛋白编码基因序列,以最大似然法和贝叶斯法构建了头喙亚目系统发育树。已测得序列长度为13 579 bp(AT:73.33%),其中包含了13个蛋白编码基因、21个t RNA基因和1个r RNA基因。除了ND5基因使用GTT作为起始密码子外,其他所有蛋白编码基因均使用ATN作为起始密码子;除了CO II使用不完整的T作为终止密码子,其他所有蛋白编码基因均使用TAA或TAG作为终止密码子。21个t RNA基因中,除了t RNASer(AGN)缺失1个稳定的茎环结构外,其他所有t RNA基因均能形成典型的三叶草二级结构。系统发育分析结果表明,进化树明显可以被分为沫蝉总科+(角蝉总科+蜡蝉总科);白边大叶蝉属于角蝉总科的叶蝉科,白边大叶蝉线粒体基因组特征与其他叶蝉科昆虫相同。 About 90% of the mitochondrial genome of Kollapaulula (Walker) was sequenced using the primer extraction step method and the mitochondrial genomic characteristics was analyzed in this study. We constructed a phylogenetic tree from 23 species (Hemiptera) based on the nucleotide sequence of 13 mitochondrial protein-coding genes using Bayesian inference and Maximum likelihood. The sequence length was 13579 bp (AT: 73.33%), includ- ing 13 protein coding genes, 21 tRNA genes and 1 rRNA gene. All protein coding genes used ATN as initiation codon except ND5 that used GTT as initiation codon. All protein coding genes used TAA or TAG as stop codon ex- cept CO I! that used incomplete T as stop codon. All of the tRNA genes formed a typical clover secondary structure except tRNASer(AGN) that was lack of a stable stem-loop structure among the 21 tRNA genes. The phylogenetic analysis results showed that the phylogenetic tree could be divided into Cercopoidea+(Membracoidea+ Fulgoroidea). The mitochondrial genome of Kolla paulula (Membracoidea: Cicadellidae) had the same characteristics as other Cicadellidae.
出处 《安徽农业大学学报》 CAS CSCD 北大核心 2017年第5期874-881,共8页 Journal of Anhui Agricultural University
基金 浙江省大学生科技创新项目(2017R409015) 浙江省自然科学基金项目(LY17C140002)共同资助
关键词 白边大叶蝉 引物步移法 线粒体基因组 系统发育 Kollapaulula (Walker) primer step method mitogenome phylogen
  • 相关文献

参考文献3

二级参考文献40

  • 1梁爱萍.关于停止使用“同翅目Homoptera”目名的建议[J].昆虫知识,2005,42(3):332-337. 被引量:68
  • 2Boore JL. Animal mitochondrial genomes. Nucleic Acids Res 1999, 27: 1767-1780.
  • 3Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999, 1410:103 -123.
  • 4Salvato P, Simonato M, Battisti A and Negrisolo E. The complete mitochondrial genome of the bag-shelter moth Ochrogaster hmifer (Lepidoptera, Notodontidae). BMC Genomics 2008, 9:331.
  • 5Resh VH and Carde RG. Insecta, Overview. In: Resh VH and CArde RG eds. Encyclopedia of Insects. Burlington MA, USA: Academic Press, 2003, 564- 566.
  • 6Kristensen NP. Phylogeny of extant hexapods. In: C.S.I.R. Organization ed. The Insects of Australia, a Textbook for Students and Research Workers, 2nd edn. Victoria: Melbourne University Press, 1991, 125-142.
  • 7Carpenter FM. Treatise on Invertebrate Paleontology. Vol 3, Superclass Hexapoda. Boulder, Colorado and Lawrence, Kansas: The Geological Society of America and the University of Kansas, 1992.
  • 8Goodchild AJP. Evolution of the alimentary canal in the Hemiptera. Biol Rev 1966, 41:97 -140.
  • 9Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Syrup Ser 1999, 41: 95-98.
  • 10Tamura K, Dudley J, Nei M and Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596 -1599.

共引文献25

同被引文献40

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部