期刊文献+

基于Laplace分布下混合联合位置与尺度模型的参数估计 被引量:2

Parameters Estimation for Mixture of Joint Location and Scale Models Based on the Laplace Distribution
下载PDF
导出
摘要 Laplace分布是分析厚尾数据的重要统计工具之一,本文基于Laplace分布提出了稳健的混合联合位置和尺度参数的回归模型,通过EM算法给出了该模型参数的极大似然估计,通过随机模拟试验验证了所提出方法的有效性.本文结合实际数据说明了该模型和方法具有实用性和可行性. Laplace distribution is one of the most important statistical data analysis tools in the datasets with peaked and heavy-tailed errors. We propose a mixture joint location and scale models based on the Laplace distribution. EM algorithm is considered to estimate unknown parameters in the maximum likelihood estimate procedure. The efficiency of models and method are proved through simulation. Furthermore, a real example is presented to illustrate the proposed methodology.
出处 《应用概率统计》 CSCD 北大核心 2017年第5期487-496,共10页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金项目(批准号:11261025 11126309) 云南省自然科学基金项目(批准号:2011FZ044)资助
关键词 混合联合位置与尺度模型 LAPLACE分布 EM算法 极大似然估计 mixture of joint location and scale models Laplace distribution EM algorithm maximum likelihood estimation
  • 相关文献

参考文献4

二级参考文献40

  • 1王璐,王飞.Hot deck插补和插补后数据的方差模拟研究[J].数量经济技术经济研究,2006,23(2):148-152. 被引量:3
  • 2李志强,薛留根.缺失数据下广义变系数模型的均值借补估计[J].数理统计与管理,2007,26(3):444-448. 被引量:2
  • 3Aitkin M. Modelling variance heterogeneity in normal regression using GLIM [J]. Journal of the Royal Statistical Society (Series C) (Applied Statistics), 1987, 36(3): 332-339.
  • 4Azzalini A. A class of distributions which includes the normal ones [J]. Scand. J. Statist., 1985, 12: 171-178.
  • 5Kotz S, Vicari D. Survey of developments in the theory of continuous skewed distributions [J]. International Journal of Statistics, 2005, 1: 225-261.
  • 6Xie F C, Wei B C, Lin J G. Homogeneity diagnostics for skew-normal nonlinear regression models [J]. Statistics and Probability Letters, 2009, 79(6): 821-827.
  • 7Cysneirosa F J A, Cordeirob G M, and Cysneiros A H M A. Corrected maximum likelihood esti- mators in heteroscedastic symmetric nonlinear models [J]. Journal of Statistical Computation and Simulation, 2010, 80(4): 451-461.
  • 8l Lachos V H, Bandyopadhyay D, Garay A M. Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions [J]. Statistics and Probability Letters, 2011, 81(8): 1208-1217.
  • 9Cook A D, Weisberg S. An Introduction to Regression Graphics [M]. New York: John WileySons, 1994.
  • 10Azzalini A. A Class of Distributions Which Includes the Normal Ones[J]. Scandinavian Journal of Statistics, 1985(2).

共引文献28

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部