期刊文献+

概率论的进步 被引量:1

Progress of Probability Theory
下载PDF
导出
摘要 本文是笔者关于概率论进展专题所写的第4文.前3文见[1],[2],[5].这里,先简要介绍十年来概率论走向成熟的若干标志性事件;介绍这个相对年轻数学学科的成长点滴.然后结合个人经历,着重介绍十年来概率论与统计物理及数学其它学科分支的交叉渗透的若干成果.本文并非学科综述,而只是希望通过一、两个侧面,展示概率论的发展和进步. This is the fourth article on the same topic. The earlier ones are [1], [2], [5]. Here, a brief introduction to a number of landmark events in a decade, which indicates that the probability theory has been moving to mature, becomes a normal branch of mathematics. We introduce this relatively young mathematics disciplines of the growth bit. And then combined with personal experience, focusing on the cross-penetration and typicM results of probability theory with statistical physics and other disciplines branch of mathematics in the past decade. This article is not subject review, but only hope that through one or two sides, showing the development and progress of probability theory.
作者 陈木法
出处 《应用概率统计》 CSCD 北大核心 2017年第5期538-550,共13页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金项目(批准号:11131003 11626245) 教育部973项目和江苏高校优势学科建设工程项目资助
关键词 概率论 统计物理 核心数学 谱理论 特征值计算 probability theory statistical mechanics core mathematics spectral theory eigenvalue computation
  • 相关文献

参考文献5

二级参考文献25

  • 1陈木法.Variational formulas and approximation theorems for the first eigenvalue in dimension one[J].Science China Mathematics,2001,44(4):409-418. 被引量:16
  • 2Yong Hua MAO.On the Empty Essential Spectrum for Markov Processes in Dimension One[J].Acta Mathematica Sinica,English Series,2006,22(3):807-812. 被引量:4
  • 3Proceedings of “ICM 2002” Ⅰ, Ⅱ, Ⅲ [M]. Higher Education Press, Beijing: 2002.
  • 4Chen Mufa(陈木法). Eigenvalues, Inequalities, and Ergodic Theory [M]. Springer, London: 2005.
  • 5Conrey J B. The Riemann hypothesis [J]. Notices of AMS, 2003, 50(3): 341-353.
  • 6康立山著.非数值并行算法(第一册)[M].北京:科学出版社,1994..
  • 7Martinelli F. Lectures on Glauber dynamics for discrete spin models [J]. LNM, 1999, 1717: 93-191. (SpringerValerg)
  • 8Minlos R A, Trishch A G. Complete spectral decomposition of the generator for one-dimensional Glauber dynamics (in Russian) [J]. Uspekhi Matem. Nauk, 1994, 49: 209-211.
  • 9Schonmann R H. Slow drop-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region [J]. Commun. Math. Phys., 1994, 161: 1-49.
  • 10Sokal A D, Thomas L E. Absence of mass gap for a class of stochastic contour models [J]. J. Statis. Phys.,1988, 51(5/6): 907-947.

共引文献18

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部