期刊文献+

石墨烯修饰电化学适配体传感器测定双酚A 被引量:4

Electrochemical aptamer sensor based on graphene modified glassy carbon electrode for the label-free detection of bisphenol A
原文传递
导出
摘要 构建了一种检测双酚A(BPA)的电化学适配体传感器。利用在线电化学方法将氧化石墨烯还原为石墨烯,通过石墨烯与单链DNA之间的相互作用,将BPA适配体单链DNA吸附固定在修饰电极上,制备了BPA电化学适配体传感器。以铁氰化钾-亚铁氰化钾平衡电对为电化学探针,利用电化学循环伏安法和差分脉冲伏安法对BPA传感器的性能进行了研究。结果表明,在最优化实验条件下,传感器对BPA的检测线性范围在1.0×10^(-15)~1.0×10^(-10)mol/L之间,检出限为3.3×10^(-16)mol/L(S/N=3)。 A simple, fast and sensitive electrochemical aptamer sensor for the determination of biaphenol A (BPA) was constructed based on graphene modified glassy carbon electrode. Graphene oxide was reduced to graphene on line by electrochemical method. The BPA aptamer DNA was immobilized on the graphene modified electrode through the interaction with graphene to prepare the BPA electrochemical aptamer sensor. With ferricyanide - ferrocyanide ( 1 : 1 ) as the electrochemical probe, the performance of BPA aptamer sensor was investigated by cyclic voltammetry (CV) and differential pulse vohammetry (DPV). The results showed that under the optimization of experimental conditions, the peak currents linearly correlated with the BPA concentration over a linear range of 1.0 × 10^-15- 1.0×10^-10 mol/L, with a detection limit of 3.3 ×10^-16 mol/L( S/N = 3 ). Featured by the wide linear range and low detection limit, the electrochemical aptamer sensor based on graphene modified electrode can be used for the detection of other environmental hormone.
出处 《分析试验室》 CAS CSCD 北大核心 2017年第11期1306-1309,共4页 Chinese Journal of Analysis Laboratory
基金 延安市科研计划项目(2016KN-09) 延安大学科研项目(YD2014-04)资助
关键词 双酚A 电化学适配体传感器 石墨烯 Bisphenol A Electrochemical aptamer sensor Graphene
  • 相关文献

参考文献7

二级参考文献102

  • 1王广军,樊静,刘国光.用溴酸钾-丁基罗丹明B体系动力学荧光法测定双酚A[J].分析科学学报,2007,23(4):478-480. 被引量:21
  • 2Abrams C. F. , Kremer K. , Macromolecules, 2003, 36, 260-267.
  • 3Yin H. S. , Zhou Y. L. , Xu J. , Ai S. Y. , Cui L. , Zhu L. S. , Anal. Chim. Acta, 2010, 659(1/2) , 144-150.
  • 4Welshons W. V. , Thayer K. A. , Judy B. M. , Taylor J. A. , Curran E. M. , vom Saal F. S. , Environ. Health Perspect, 2003, 111,994- 1006.
  • 5Apodaca D. C. , Pemites R. B. , Ponnapati R. , del Mundo F. R. , Adrincula R. C. , Macromolecules, 2011, 44(17), 6669--6682.
  • 6Xue J. Q. , Li D. W. , Qu L. L. , Long Y. T. , Anal. Chim. Aeta, 2013, 777, 57--62.
  • 7Momes F. C. , Silva T. A. , Cesarino I. , Machado S. A. S. , Sens. Actuators B: Chem. , 2013, 117, 14-18.
  • 8Chen X. M. , Ren T. Q. , Ma M. , Wang Z. G. , Zhan G. Q. , Li C. Y. , Electrochim. Acta, 2013, 111,49-56.
  • 9FanH. X., LiY., Wu D., Ma H. M., Mao K. X., Fan D. W., DUB., Li H., Wei Q., Anal. Chim. Acta, 2012, 711, 24-28.
  • 10Zheng Z. X. , Du Y. L. , Wang Z. H. , Feng Q. L. , Wang C. M. , Analyst, 2013, 138(2), 693-701.

共引文献52

同被引文献24

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部